This is the 'axodraw' system. Currently it is used for drawing Feynman diagrams in the contents of a LaTeX document. This system was made by Jos Vermaseren and can be used freely for non commercial purposes only. Any commercial use needs the written approval of Jos Vermaseren. Basically the graphics primitives are written in postscript, but the user sees only LaTeX commands, and never has to worry about postscript. This gives a considerable flexibility. The current version (5-mar-1998) supports color. This file contains the files axodraw.sty and axoman.tex The files are separated by lines that start with %======, end with =======% and have lots of ====='s and the name in the middle. The text between the lines should be the file. The lines with #[ and #] are lines that mark folds as used by the STedi folding editor. The whole will work together with the dvips system of radical eye software. With other dvi to postscript converters or with systems that do not convert properly to postscript working is not garanteed. The manual is obtained by the commands latex axoman dvips axoman after which it should be available from the printer. Good Luck Jos Vermaseren %==============================axodraw.sty===========================% % % Style file for the drawing of Feynman diagrams with LaTeX. % It assumes that the dvips that is used is by Radical Eye Software % (by Rokicki), because the graphics primitives are given in % postscript. If you do not work with a dvi to postscript converter % you are out of luck. % % Made by J.A.M. Vermaseren 14-feb-1994 % % Use: % Enter the picture environment with for instance % \begin{picture}(width,height)(0,0) % statements % \end{picture} % All statements should be entered inside the picture environment. % All coordinates should be in terms of pt (but the pt must be omitted). % One may also use the figure environment. % \input{epsf.sty} \openin5=colordvi.sty \ifeof5 \closein5 \def\axocolor{ } \def\SetColor#1{ } \def\Color#1#2{#2} \def\IfColor#1#2{#2 } \else \closein5 \input{colordvi.sty} \background{White} \textBlack \def\axocolor{Black } \def\SetColor#1{\def\axocolor{#1 }} \def\IfColor#1#2{#1} \fi % #[ inventory : % % The variables in are: % mtrx,num,ampi,x1,y1,x2,y2,dx,dy,dr,speed % step,phi,arcend,arcstart,radius % theindex,thechar,darc,const,amp1 amp2 amp3 % gcolor,xx,name,name1,name2,xx1,xx2 % % NOTE: blank lines are not allowed inside the postscript code!!!!! % (LaTeX sneaks \par commands in and the postscript goes boink) % \special{! /ed{exch def}def /gs{gsave dup scale}def /gsw{gs /width ed width setlinewidth}def /p1{/y1 ed /x1 ed}def /p2{/y2 ed /x2 ed}def /abox{newpath x1 y1 moveto x1 y2 lineto x2 y2 lineto x2 y1 lineto closepath}def } % % #] inventory : % #[ arrowdown : % \special{! /arrowdown{ /nwidth { width 1 add } def newpath 0 nwidth 1.5 mul neg moveto % Arrow is a triangle nwidth 1.2 mul nwidth 3 mul rlineto nwidth 2.4 mul neg 0 rlineto nwidth 1.2 mul nwidth 3 mul neg rlineto closepath fill % and it is filled } def } % % #] arrowdown : % #[ arrowup : % \special{! /arrowup{ /nwidth { width 1 add } def newpath 0 nwidth 1.5 mul moveto % Arrow is a triangle nwidth 1.2 mul nwidth 3 mul neg rlineto nwidth 2.4 mul neg 0 rlineto nwidth 1.2 mul nwidth 3 mul rlineto closepath fill % and it is filled } def } % % #] arrowup : % #[ arrowright : % \special{! /arrowright{ /nwidth { width 1 add } def newpath nwidth 1.5 mul 0 moveto % Arrow is a triangle nwidth 3 mul neg nwidth 1.2 mul rlineto 0 nwidth 2.4 mul neg rlineto nwidth 3 mul nwidth 1.2 mul rlineto closepath fill % and it is filled } def } % % #] arrowright : % #[ gluon : % \special{! /gluon{ gsw /num ed /ampi ed /dy ed /dx ed p1 /dy dy y1 sub def /dx dx x1 sub def % % We have a 'head' and a 'tail' and inbetween the 'body' % The head + tail is 2 windings. The body is num-1 windings. % /dr dx dx mul dy dy mul add sqrt def % x1 y1 translate dy dx atan rotate % /num num 0.5 sub round def /inc dr num 2 mul 2 add div def % increment per half winding /amp8 ampi 0.9 mul def amp8 0 lt {/amp8 amp8 neg def} if % /x1 inc 2 mul def % newpath 0 0 moveto inc 0.1 mul ampi 0.5 mul inc 0.5 mul ampi inc 1.4 mul ampi curveto x1 amp8 add dup ampi exch ampi neg dup x1 exch curveto % 2 1 num { pop x1 amp8 sub dup ampi neg exch ampi dup x1 inc add exch curveto /x1 x1 inc dup add add def x1 amp8 add dup ampi exch ampi neg dup x1 exch curveto } for % x1 amp8 sub dup ampi neg exch ampi dup x1 inc 0.6 mul add exch curveto x1 inc 1.5 mul add ampi dr inc 0.1 mul sub ampi 0.5 mul dr 0 curveto stroke % grestore } def } % % #] gluon : % #[ photon : % \special{! /photon{ % % Draws a photon from x1,y1 to x2,y2 with amplitude A and n wiggles % gsw /num ed /ampi ed p2 p1 /dy y2 y1 sub def /dx x2 x1 sub def /dr dx dx mul dy dy mul add sqrt def % x1 y1 translate dy dx atan rotate /num num 2 mul 0.5 sub round def /x2 dr num div def /pi 3.141592 def /sign 1 def 1 1 num { pop newpath 0 0 moveto 4 3 div x2 mul pi div dup neg x2 add 4 3 div ampi sign mul mul dup 3 1 roll x2 0 curveto stroke /sign sign neg def x2 0 translate } for % grestore } def } % % #] photon : % #[ zigzag : % \special{! /zigzag{ % % Draws a zigzag line from x1,y1 to x2,y2 with amplitude A and n zigzags % gsw /num ed /ampi ed p2 p1 /dy y2 y1 sub def /dx x2 x1 sub def /dr dx dx mul dy dy mul add sqrt def % x1 y1 translate dy dx atan rotate /num num 2 mul 0.5 sub round def /x2 dr num div def /pi 3.141592 def /sign 1 def 1 1 num { pop newpath 0 0 moveto x2 2 div ampi sign mul lineto x2 0 lineto stroke /sign sign neg def x2 0 translate } for % grestore } def } % % #] zigzag : % #[ photonarc : % \special{! /photonarc{ % % Draws a photonarc center at x1,y1, radius arcstart,arcend, amplitude % number of wiggles, width, scale % gsw /num ed /ampli ed /arcend ed /arcstart ed /radius ed % translate % The center of the circle is now the origin % /num num 2 mul round def % number of half wiggles arcend arcstart lt { /arcend arcend 360 add def } if /arcend arcend arcstart sub num div def % phi arcstart rotate /arcstart arcend 2 div def % phi/2 /cp arcend cos def /sp arcend sin def /cp2 arcstart cos def /sp2 arcstart sin def % newpath 1 1 num { pop radius 0 moveto /beta radius arcend mul 180 ampli mul div def /tt sp cp beta mul sub cp sp beta mul add div def /amp1 radius ampli add 8 mul beta cp2 mul sp2 sub mul beta 4 cp add mul tt cp mul 3 mul sp 4 mul sub add radius mul sub beta tt sub 3 mul div def % this is x2 radius ampli add 8 mul cp2 mul 1 cp add radius mul sub 3 div amp1 sub dup radius sub beta mul % x1,y1 amp1 dup radius cp mul sub tt mul radius sp mul add % x2,y2 radius cp mul radius sp mul % x3 y3 curveto /ampli ampli neg def arcend rotate } for stroke % grestore } def } % % #] photonarc : % #[ gluearc : % \special{! /gluearc{ % % Draws a gluon on an arcsegment % x_center,y_center,radius,stat_angle,end_angle,gluon_radius,num % in which num is the number of windings of the gluon. % Method: % 1: compute length of arc. % 2: generate gluon in x and y as if the arc is a straight line % 3: x' = (radius+y)*cos(x*const) % y' = (radius+y)*sin(x*const) % gsw /num ed /ampi ed /arcend ed /arcstart ed /radius ed % translate % move to center of circle arcstart rotate % segment starts at zero /darc arcend arcstart sub def % argsegment /dr darc 180 div 3.141592 mul radius mul def % length of segment. /const darc dr div def % conversion constant % /num num 0.5 sub round def /inc dr num 2 mul 2 add div def % increment per half winding % /amp8 ampi 0.9 mul def /amp1 radius ampi add def /amp2 radius ampi sub def /amp3 radius ampi 2 div add def /amp4 amp1 inc amp8 add const mul cos div def /amp5 amp2 amp8 const mul cos div def /amp6 amp1 inc 0.6 mul amp8 add const mul cos div def /amp7 amp1 inc 0.9 mul const mul cos div def amp8 0 lt {/amp8 amp8 neg def} if % /x1 inc 2 mul def % newpath radius 0 moveto % inc 0.1 mul const mul dup cos amp3 mul exch sin amp3 mul inc 0.5 mul const mul dup cos amp7 mul exch sin amp7 mul inc 1.4 mul const mul dup cos amp1 mul exch sin amp1 mul curveto x1 amp8 add const mul dup cos amp6 mul exch sin amp6 mul x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul x1 const mul dup cos amp2 mul exch sin amp2 mul curveto % 2 1 num { pop x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul x1 amp8 sub const mul dup cos amp4 mul exch sin amp4 mul x1 inc add const mul dup cos amp1 mul exch sin amp1 mul curveto /x1 x1 inc dup add add def x1 amp8 add const mul dup cos amp4 mul exch sin amp4 mul x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul x1 const mul dup cos amp2 mul exch sin amp2 mul curveto } for % x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul x1 amp8 sub const mul dup cos amp6 mul exch sin amp6 mul x1 inc 0.6 mul add const mul dup cos amp1 mul exch sin amp1 mul curveto x1 inc 1.5 mul add const mul dup cos amp7 mul exch sin amp7 mul dr inc 0.1 mul sub const mul dup cos amp3 mul exch sin amp3 mul dr const mul dup cos radius mul exch sin radius mul curveto stroke % grestore } def } % % #] gluearc : % #[ arrowarc : % \special{! /arrowarc{ % % Draws an anticlockwise arc with an arrow in the middle % The arc is x_center, y_center, radius, start_angle, end_angle % gsw /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack newpath 0 0 radius arcstart arcend arc stroke arcstart arcend gt { /arcend arcend 360 add def } if arcstart arcend add 2 div rotate % middle of arc radius 0 translate % move to it arrowup grestore } def } % % #] arrowarc : % #[ longarrowarc : % \special{! /longarrowarc{ % % Draws an anticlockwise arc with an arrow at the end % The arc is x_center, y_center, radius, start_angle, end_angle % gsw /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack arcstart arcend gt { /arcend arcend 360 add def } if /arcmid 540 width 1 add mul 3.14159 div radius div def % discount for arrow newpath 0 0 radius arcstart arcend arcmid sub arc stroke arcend arcmid 2 div sub rotate % middle of arrow radius 0 translate % move to it arrowup grestore } def } % % #] longarrowarc : % #[ dasharrowarc : % \special{! /dasharrowarc{ % % Draws a dashed anticlockwise arc with an arrow in the middle % The arc is x_center, y_center, radius, start_angle, end_angle dsize % gsw /dsize ed /arcend1 ed /arcstart1 ed /radius ed % translate % x and y are still on stack % arcend1 arcstart1 lt { /arcend1 arcend1 360 add def } if /arcmid1 arcend1 arcstart1 add 2 div def % 0 0 radius arcstart1 arcmid1 dsize width 1 dashcarc 0 0 radius arcmid1 arcend1 dsize width 1 dashcarc arcmid1 rotate radius 0 translate arrowup grestore } def } % % #] dasharrowarc : % #[ arrowarcn : % \special{! /arrowarcn{ % % Draws a clockwise arc with an arrow in the middle % The arc is x_center, y_center, radius, start_angle, end_angle % gsw /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack newpath 0 0 radius arcstart arcend arcn stroke arcstart arcend lt { /arcstart arcstart 360 add def } if arcstart arcend add 2 div rotate % middle of arc radius 0 translate % move to it arrowdown grestore } def } % % #] arrowarcn : % #[ longarrowarcn : % \special{! /longarrowarcn{ % % Draws a clockwise arc with an arrow in the end % The arc is x_center, y_center, radius, start_angle, end_angle % gsw /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack arcstart arcend lt { /arcstart arcstart 360 add def } if /arcmid 540 width 1 add mul 3.14159 div radius div def % correction for arrow newpath 0 0 radius arcstart arcend arcmid add arcn stroke arcend arcmid 2 div add rotate % middle of arrow radius 0 translate % move to it arrowdown grestore } def } % % #] longarrowarcn : % #[ dasharrowarcn : % \special{! /dasharrowarcn{ % % Draws a dashed clockwise arc with an arrow in the middle % The arc is x_center, y_center, radius, start_angle, end_angle % gsw /dsize ed /arcend1 ed /arcstart1 ed /radius ed % translate % x and y are still on stack arcstart1 arcend1 lt { /arcstart1 arcstart1 360 add def } if /arcmid1 arcstart1 arcend1 add 2 div def 0 0 radius arcmid1 arcstart1 dsize width 1 dashcarc 0 0 radius arcend1 arcmid1 dsize width 1 dashcarc arcmid1 rotate radius 0 translate arrowdown grestore } def } % % #] dasharrowarcn : % #[ arrowline : % \special{! /arrowline{ % % Draws a straight line with an arrow in the middle % x1,y1,x2,y2 % gsw p2 p1 /dx x2 x1 sub def /dy y2 y1 sub def /dr dx dx mul dy dy mul add sqrt def % x1 y1 translate newpath 0 0 moveto dx dy rlineto stroke dy dx atan rotate dr 2.0 div 0 translate arrowright grestore } def } % % #] arrowline : % #[ longarrow : % \special{! /longarrow{ % % Draws a straight line with an arrow at the end % x1,y1,x2,y2 % gsw p2 p1 /dx x2 x1 sub def /dy y2 y1 sub def /dr dx dx mul dy dy mul add sqrt def % x1 y1 translate dy dx atan rotate newpath 0 0 moveto dr width 3 mul sub 0 rlineto stroke dr width 1.5 mul sub 0 translate arrowright grestore } def } % % #] longarrow : % #[ dasharrowline : % \special{! /dasharrowline{ % % Draws a straight dashed line with an arrow in the middle % x1,y1,x2,y2 % % The pattern is ideally [dsize dsize] 0 setdash % but we want to have (2*n+1)/2 patterns, so dsize must be rounded % Actually we want the center to be black too so that the arrow % fits in nice. This means that n must be odd. So % r = dsize*(4*m+3) % gsw /dsize ed p2 p1 /dx x2 x1 sub def /dy y2 y1 sub def /dr dx dx mul dy dy mul add sqrt 2 div def % x1 y1 translate dy dx atan rotate % 0 0 dr 0 dsize width 1 dashline dr 0 translate 0 0 dr 0 dsize width 1 dashline arrowright grestore } def } % % #] dasharrowline : % #[ line : % \special{! /line{ % % Draws a straight line: x1,y1,x2,y2 % gsw p2 p1 % newpath x1 y1 moveto x2 y2 lineto stroke grestore } def } % % #] line : % #[ dashline : % \special{! /dashline{ % % Draws a straight dashed line: x1,y1,x2,y2,dsize % % The pattern is ideally [dsize dsize] 0 setdash % but we want to have (2*n+1)/2 patterns, so dsize must be rounded % gsw /dsize ed p2 p1 /r y2 y1 sub dup mul x2 x1 sub dup mul add sqrt def /dsize r dsize 2 mul div 0.5 sub round dup 0 le { pop 0 } if 2 mul 1 add r exch div def [dsize dsize] 0 setdash % newpath x1 y1 moveto x2 y2 lineto stroke grestore } def } % % #] dashline : % #[ carc : % \special{! /carc{ % % Draws an anti-clockwise arc segment: % x_center, y_center, radius, start_angle, end_angle % gsw /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack newpath 0 0 radius arcstart arcend arc stroke grestore } def } % % #] carc : % #[ dashcarc : % \special{! /dashcarc{ % % Draws an anti-clockwise arc segment: % x_center, y_center, radius, start_angle, end_angle, dsize % gsw /dsize ed /arcend ed /arcstart ed /radius ed % translate % x and y are still on stack % % Compute the length of the line % /dr arcend arcstart sub dup 0 lt { 360 add } if 3.14159 mul 180 div radius mul def /dsize dr dsize 2 mul div 0.5 sub round dup 0 le { pop 0 } if 2 mul 1 add dr exch div def [dsize dsize] 0 setdash % newpath 0 0 radius arcstart arcend arc stroke grestore } def } % % #] dashcarc : % #[ vertex : % \special{! /vertex{ % % Puts a fat dot at x,y size is the radius of the dot % gs /dotsize ed translate newpath 0 0 dotsize 0 360 arc fill stroke grestore } def } % % #] vertex : % #[ bcirc : % \special{! /bcirc{ % % Draws an anti-clockwise blanked circle: % x_center, y_center, radius % gsw /radius ed % translate % x and y are still on stack % gsave 1 setgray newpath 0 0 radius 0 360 arc fill grestore newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] bcirc : % #[ gcirc : % \special{! /gcirc{ % % Draws an anti-clockwise blanked gray circle: % x_center, y_center, radius, grayscale % gsw /gcolor ed /radius ed % translate % x and y are still on stack % 1 setgray newpath 0 0 radius 0 360 arc fill gcolor setgray newpath 0 0 radius 0 360 arc fill 0 setgray newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] gcirc : % #[ ccirc1 : % \special{! /ccirc1{ % % Draws an anti-clockwise circle : % x_center, y_center, radius % Part 1: the contents in background color % gsw /radius ed % translate % x and y are still on stack % newpath 0 0 radius 0 360 arc fill grestore } def } % % #] ccirc1 : % #[ ccirc2 : % \special{! /ccirc2{ % % Draws an anti-clockwise circle : % x_center, y_center, radius % Part 1: the contents in background color % gsw /radius ed % translate % x and y are still on stack % newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] ccirc2 : % #[ box : % \special{! /box{ % % Draws a box x1,y1,x2,y2 % gsw p2 p1 abox stroke grestore } def } % % #] box : % #[ bbox : % \special{! /bbox{ % % Draws a blanked out box x1,y1,x2,y2 % gsw p2 p1 gsave 1 setgray abox fill grestore abox stroke grestore } def } % % #] bbox : % #[ gbox : % \special{! /gbox{ % % Draws a blanked out gray box x1,y1,x2,y2,color % gsw /gcolor ed p2 p1 1 setgray abox fill gcolor setgray abox fill 0 setgray abox stroke grestore } def } % % #] gbox : % #[ cbox1 : % \special{! /cbox1{ % % Draws a blanked out colored box x1,y1,x2,y2 % Part 1: the background % gsw p2 p1 abox fill grestore } def } % % #] cbox1 : % #[ cbox2 : % \special{! /cbox2{ % % Draws a blanked out colored box x1,y1,x2,y2 % Part 1: the box % gsw p2 p1 abox stroke grestore } def } % % #] cbox2 : % #[ btext : % \special{! /btext{ % % Makes a box that has the text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text,fontsize,linewidth,scale % gsw /fsize ed /thetext ed translate /hsize thetext stringwidth pop def /x1 hsize fsize add 2 div neg def /y1 fsize 2 mul 3 div neg def /x2 x1 neg def /y2 y1 neg def gsave 1 setgray abox fill grestore abox stroke hsize 2 div neg fsize 3 div neg moveto thetext show grestore } def } % % #] btext : % #[ b2text : % \special{! /b2text{ % % Makes a box that has two lines of text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text1,text2,fontsize,linewidth,scale % gsw /fsize ed /text2 ed /text1 ed translate /hsize1 text1 stringwidth pop def /hsize2 text2 stringwidth pop def hsize1 hsize2 lt { /hsize hsize2 def } { /hsize hsize1 def } ifelse /x1 hsize fsize add 2 div neg def /y1 fsize neg 7 mul 6 div def /x2 x1 neg def /y2 y1 neg def gsave 1 setgray abox fill grestore abox stroke hsize1 2 div neg fsize 6 div moveto text1 show hsize2 2 div neg fsize 5 mul 6 div neg moveto text2 show grestore } def } % % #] b2text : % #[ gtext : % \special{! /gtext{ % % Makes a gray box that has the text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,gray,text,fontsize,linewidth,scale % gsw /fsize ed /thetext ed /graysc ed translate /hsize thetext stringwidth pop def /x1 hsize fsize add 2 div neg def /y1 fsize 2 mul 3 div neg def /x2 x1 neg def /y2 y1 neg def graysc setgray abox fill 0 setgray abox stroke hsize 2 div neg fsize 3 div neg moveto thetext show grestore } def } % % #] gtext : % #[ ctext1 : % \special{! /ctext1{ % % Makes a colored box that has the text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text,fontsize,linewidth,scale % Part 1: the background % gsw /fsize ed /thetext ed translate /hsize thetext stringwidth pop def /x1 hsize fsize add 2 div neg def /y1 fsize 2 mul 3 div neg def /x2 x1 neg def /y2 y1 neg def abox fill grestore } def } % % #] ctext1 : % #[ ctext2 : % \special{! /ctext2{ % % Makes a colored box that has the text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text,fontsize,linewidth,scale % Part 2: the box and the text % gsw /fsize ed /thetext ed translate /hsize thetext stringwidth pop def /x1 hsize fsize add 2 div neg def /y1 fsize 2 mul 3 div neg def /x2 x1 neg def /y2 y1 neg def abox stroke hsize 2 div neg fsize 3 div neg moveto thetext show grestore } def } % % #] ctext2 : % #[ g2text : % \special{! /g2text{ % % Makes a gray box that has two lines of text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,gray,text1,text2,fontsize,linewidth,scale % gsw /fsize ed /text2 ed /text1 ed /graysc ed translate /hsize1 text1 stringwidth pop def /hsize2 text2 stringwidth pop def hsize1 hsize2 lt { /hsize hsize2 def } { /hsize hsize1 def } ifelse /x1 hsize fsize add 2 div neg def /y1 fsize neg 7 mul 6 div def /x2 x1 neg def /y2 y1 neg def graysc setgray abox fill 0 setgray abox stroke hsize1 2 div neg fsize 6 div moveto text1 show hsize2 2 div neg fsize 5 mul 6 div neg moveto text2 show grestore } def } % % #] g2text : % #[ c2text1 : % \special{! /c2text1{ % % Makes a colored box that has two lines of text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text1,text2,fontsize,linewidth,scale % Part 1: the background % gsw /fsize ed /text2 ed /text1 ed translate /hsize1 text1 stringwidth pop def /hsize2 text2 stringwidth pop def hsize1 hsize2 lt { /hsize hsize2 def } { /hsize hsize1 def } ifelse /x1 hsize fsize add 2 div neg def /y1 fsize neg 7 mul 6 div def /x2 x1 neg def /y2 y1 neg def abox fill grestore } def } % % #] c2text1 : % #[ c2text2 : % \special{! /c2text2{ % % Makes a colored box that has two lines of text centered in it % The center of the box is at x,y and the box is just large enough % for the text. % x,y,text1,text2,fontsize,linewidth,scale % Part 2, box and text % gsw /fsize ed /text2 ed /text1 ed translate /hsize1 text1 stringwidth pop def /hsize2 text2 stringwidth pop def hsize1 hsize2 lt { /hsize hsize2 def } { /hsize hsize1 def } ifelse /x1 hsize fsize add 2 div neg def /y1 fsize neg 7 mul 6 div def /x2 x1 neg def /y2 y1 neg def abox stroke hsize1 2 div neg fsize 6 div moveto text1 show hsize2 2 div neg fsize 5 mul 6 div neg moveto text2 show grestore } def } % % #] c2text2 : % #[ ptext : % \special{! /ptext{ % % Puts a text at x,y (focal point) % phi is a rotation angle % Mode tells how the text should be w.r.t. the focal point. % fsize is the fontsize % Then the text is given. % Finally the scale factor should be there % gs /text ed /fsize ed /mode ed 3 1 roll translate rotate % We are at the focus and have the proper orientation mode 3 lt { 0 fsize neg translate } { mode 6 lt { /mode mode 3 sub def 0 fsize 2 div neg translate } { /mode mode 6 sub def } ifelse } ifelse /fsize text stringwidth pop def mode 1 eq { fsize 2 div neg 0 translate } { mode 2 eq { fsize neg 0 translate } if } ifelse 0 0 moveto text show grestore } def } % % #] ptext : % #[ goval : % \special{! /goval{ % % Draws a colored oval that overwrites whatever was there. % x_center y_center height width rotation color linewidth scale % gsw /gcolor ed /x1 ed /x2 ed /radius ed % translate % x and y are still on stack x1 rotate x2 radius div 1.0 scale 1 setgray newpath 0 0 radius 0 360 arc fill gcolor setgray newpath 0 0 radius 0 360 arc fill 0 setgray newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] goval : % #[ coval1 : % \special{! /coval1{ % % Draws a oval that overwrites whatever was there. % x_center y_center height width rotation linewidth scale % gsw /x1 ed /x2 ed /radius ed % translate % x and y are still on stack x1 rotate x2 radius div 1.0 scale newpath 0 0 radius 0 360 arc fill grestore } def } % % #] coval1 : % #[ coval2 : % \special{! /coval2{ % % Draws a oval that overwrites whatever was there. % x_center y_center height width rotation linewidth scale % gsw /x1 ed /x2 ed /radius ed % translate % x and y are still on stack x1 rotate x2 radius div 1.0 scale newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] coval2 : % #[ oval : % \special{! /oval{ % % Draws an oval that does not overwrite whatever was there. % x_center y_center height width rotation linewidth scale % gsw /x1 ed /x2 ed /radius ed % translate % x and y are still on stack x1 rotate x2 radius div 1.0 scale % newpath 0 0 radius 0 360 arc stroke grestore } def } % % #] oval : % #[ makecurve : % \special{! /docurve{ x1 2 mul x2 add 3 div y1 y0 sub x1 x0 sub div x2 x0 sub mul y2 y0 sub x2 x0 sub div x1 x0 sub mul add y1 add y0 2 mul add 3 div x1 x2 2 mul add 3 div y2 y3 sub x2 x3 sub div x1 x3 sub mul y1 y3 sub x1 x3 sub div x2 x3 sub mul add y2 add y3 2 mul add 3 div x2 y2 curveto } def } % \special{! /makecurve{ % % Incoming stack: % [array of x,y pairs] width scale % gsw /points ed /ss points length 2 idiv 2 mul def newpath ss 4 gt { /x1 points 0 get def /y1 points 1 get def /x2 points 2 get def /y2 points 3 get def /x3 points 4 get def /y3 points 5 get def /x0 x1 2 mul x2 sub def /y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul x2 x1 sub dup mul x3 x1 sub div mul y1 2 mul add y2 sub def x1 y1 moveto docurve 0 2 ss 8 sub { /ii ed /x0 points ii get def /y0 points ii 1 add get def /x1 points ii 2 add get def /y1 points ii 3 add get def /x2 points ii 4 add get def /y2 points ii 5 add get def /x3 points ii 6 add get def /y3 points ii 7 add get def docurve } for /x0 points ss 6 sub get def /y0 points ss 5 sub get def /x1 points ss 4 sub get def /y1 points ss 3 sub get def /x2 points ss 2 sub get def /y2 points ss 1 sub get def /x3 x2 2 mul x1 sub def /y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul x2 x1 sub dup mul x2 x0 sub div mul y2 2 mul add y1 sub def docurve } { ss 4 eq { points 0 get points 1 get moveto points 2 get points 3 get lineto } if } ifelse stroke grestore } def } % % #] makecurve : % #[ makedashcurve : % \special{! /makedashcurve{ % % Incoming stack: % [array of x,y pairs] dashsize width scale % gsw /dsize ed /points ed /ss points length 2 idiv 2 mul def newpath ss 4 gt { /x1 points 0 get def /y1 points 1 get def /x2 points 2 get def /y2 points 3 get def /x3 points 4 get def /y3 points 5 get def /x0 x1 2 mul x2 sub def /y0 y3 y2 sub x3 x2 sub div y2 y1 sub x2 x1 sub div sub 2 mul x2 x1 sub dup mul x3 x1 sub div mul y1 2 mul add y2 sub def x1 y1 moveto docurve 0 2 ss 8 sub { /ii ed /x0 points ii get def /y0 points ii 1 add get def /x1 points ii 2 add get def /y1 points ii 3 add get def /x2 points ii 4 add get def /y2 points ii 5 add get def /x3 points ii 6 add get def /y3 points ii 7 add get def docurve } for /x0 points ss 6 sub get def /y0 points ss 5 sub get def /x1 points ss 4 sub get def /y1 points ss 3 sub get def /x2 points ss 2 sub get def /y2 points ss 1 sub get def /x3 x2 2 mul x1 sub def /y3 y2 y1 sub x2 x1 sub div y1 y0 sub x1 x0 sub div sub 2 mul x2 x1 sub dup mul x2 x0 sub div mul y2 2 mul add y1 sub def docurve } { ss 4 eq { points 0 get points 1 get moveto points 2 get points 3 get lineto } if } ifelse centerdash stroke grestore } def } % \special{! /pathlength{ flattenpath /dist 0 def { /yfirst ed /xfirst ed /ymoveto yfirst def /xmoveto xfirst def } { /ynext ed /xnext ed /dist dist ynext yfirst sub dup mul xnext xfirst sub dup mul add sqrt add def /yfirst ynext def /xfirst xnext def } {} {/ynext ymoveto def /xnext xmoveto def /dist ynext yfirst sub dup mul xnext xfirst sub dup mul add sqrt add def /yfirst ynext def /xfirst xnext def } pathforall dist } def } % \special{! /centerdash{ /pathlen pathlength def /jj pathlen dsize div 2.0 div cvi def /ddsize pathlen jj 2.0 mul div def [ddsize] ddsize 2 div setdash } def } % % #] makedashcurve : % #[ logaxis : % \special{! /logaxis{ % % Draws an axis from x1,y1 to x2,y2 with nl log divisions % size of the hashes hs, offset F % and width W. The stack looks like % x1,y1,x2,y2,nl,hs,F,W,scale % After the rotation the hash marks are on top if nl is positive and % on the bottom if nl is negative % gsw /offset ed /hashsize ed /nlogs ed p2 p1 x1 y1 translate /y2 y2 y1 sub def /x2 x2 x1 sub def y2 x2 atan rotate /rr x2 dup mul y2 dup mul add sqrt def offset 0 ne { /offset offset ln 10 ln div def } if /offset offset dup cvi sub def newpath 0 0 moveto rr 0 lineto /lsize rr nlogs div def 0 1 nlogs { /x2 ed x2 offset ge { /y2 x2 offset sub lsize mul def y2 rr le { y2 0 moveto y2 hashsize 1.2 mul lineto } if } if } for stroke width 0.6 mul setlinewidth newpath 0 1 nlogs { /x2 ed 2 1 9 { ln 10 ln div x2 add /xx2 ed xx2 offset ge { /y2 xx2 offset sub lsize mul def y2 rr le { y2 0 moveto y2 hashsize 0.8 mul lineto } if } if } for } for stroke grestore } def } % % #] logaxis : % #[ linaxis : % \special{! /linaxis{ % % x1,y1,x2,y2,num_decs,per_dec,hashsize,offset,width,scale % gsw /offset ed /hashsize ed /perdec ed /numdec ed p2 p1 x1 y1 translate /y2 y2 y1 sub def /x2 x2 x1 sub def y2 x2 atan rotate /rr x2 dup mul y2 dup mul add sqrt def newpath 0 0 moveto rr 0 lineto /x1 rr numdec perdec mul div def /y1 rr numdec div def /offset offset x1 mul def 0 1 numdec { y1 mul offset sub dup 0 ge { dup rr le { dup 0 moveto hashsize 1.2 mul lineto } if } if } for stroke width 0.6 mul setlinewidth newpath offset cvi 1 numdec perdec mul offset add { x1 mul offset sub dup 0 ge { dup rr le { dup 0 moveto hashsize 0.8 mul lineto } if } if } for stroke grestore } def } % % #] linaxis : % \def\axowidth{0.5 } \def\axoscale{1.0 } \def\axoxoff{0 } \def\axoyoff{0 } \def\axoxo{0 } \def\axoyo{0 } \def\firstcall{1} % \def\Gluon(#1,#2)(#3,#4)#5#6{ % % Draws a gluon from (x1,y1) to (x2,y2) with amplitude and number of windings % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 #6 \axowidth \axoscale gluon showpage}} } % \def\Photon(#1,#2)(#3,#4)#5#6{ % % Draws a photon from (x1,y1) to (x2,y2) with amplitude and number of windings % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 #6 \axowidth \axoscale photon showpage}} } % \def\ZigZag(#1,#2)(#3,#4)#5#6{ % % Draws a zigzag from (x1,y1) to (x2,y2) with amplitude and number of zigzags % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 #6 \axowidth \axoscale zigzag showpage}} } % \def\PhotonArc(#1,#2)(#3,#4,#5)#6#7{ % % Draws a photon on an arc segment. The center of the curve is at (1,2) % The radius, start angle and target angle are (#3,#4,#5), 6 is the % amplitude of the gluon, and 7 is the number of wiggles. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 #6 #7 \axowidth \axoscale photonarc showpage}} } % \def\GlueArc(#1,#2)(#3,#4,#5)#6#7{ % % Draws a gluon on aa arc segment. The center of the curve is at (1,2) % The radius, start angle and target angle are (#3,#4,#5), 6 is the % amplitude of the gluon, and 7 is the number of windings. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 #6 #7 \axowidth \axoscale gluearc showpage}} } % \def\ArrowArc(#1,#2)(#3,#4,#5){ % % Draws an arc segment with an arrow in it. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs anticlockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale arrowarc showpage}} } % \def\LongArrowArc(#1,#2)(#3,#4,#5){ % % Draws an arc segment with an arrow at its end. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs anticlockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale longarrowarc showpage}} } % \def\DashArrowArc(#1,#2)(#3,#4,#5)#6{ % % Draws a dashed arc segment with an arrow in it. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs anticlockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 #6 \axowidth \axoscale dasharrowarc showpage}} } % \def\ArrowArcn(#1,#2)(#3,#4,#5){ % % Draws an arc segment with an arrow in it. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs clockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale arrowarcn showpage}} } % \def\LongArrowArcn(#1,#2)(#3,#4,#5){ % % Draws an arc segment with an arrow at the end. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs clockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale longarrowarcn showpage}} } % \def\DashArrowArcn(#1,#2)(#3,#4,#5)#6{ % % Draws a dashed arc segment with an arrow in it. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs clockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 #6 \axowidth \axoscale dasharrowarcn showpage}} } % \def\ArrowLine(#1,#2)(#3,#4){ % % Draws a line with an arrow in it from (x1,y1) to (x2,y2) % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale arrowline showpage}} } % \def\LongArrow(#1,#2)(#3,#4){ % % Draws a line with an arrow at the end from (x1,y1) to (x2,y2) % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale longarrow showpage}} } % \def\DashArrowLine(#1,#2)(#3,#4)#5{ % % Draws a dashed line with an arrow in it from (x1,y1) to (x2,y2) % The size of the dashes is given by the fifth argument. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 \axowidth \axoscale dasharrowline showpage}} } % \def\Line(#1,#2)(#3,#4){ % % Draws a line from (x1,y1) to (x2,y2) % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale line showpage}} } % \def\DashLine(#1,#2)(#3,#4)#5{ % % Draws a line from (x1,y1) to (x2,y2) with a dash pattern of which the % alternating black and white pieces are approximately {5} points long % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 \axowidth \axoscale dashline showpage}} } % \def\CArc(#1,#2)(#3,#4,#5){ % % Draws an arc segment. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs anticlockwise % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale carc showpage}} } % \def\DashCArc(#1,#2)(#3,#4,#5)#6{ % % Draws a dashed arc segment. The center of the curve % is at (1,2). % The radius, start angle and target angle are (#3,#4,#5). % The arc segment runs anticlockwise % dsize (6) is the dashsize. this is rounded to make things come % out right. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 #6 \axowidth \axoscale dashcarc showpage}} } % \def\Vertex(#1,#2)#3{ % % Draws a fat dot at (1,2). The radius of the dot is given by 3. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoscale vertex showpage}} } % \def\Text(#1,#2)[#3]#4{ % % Draws text at (1,2). Argument 3 is l,r or c indicating whether % the text is left adjusted, right adjusted or centered. % 4 is of course the text. % \dimen0=\axoxoff \unitlength \dimen1=\axoyoff \unitlength \advance\dimen0 by #1 \unitlength \advance\dimen1 by #2 \unitlength \makeatletter \@killglue\raise\dimen1\hbox to\z@{\kern\dimen0 \makebox(0,0)[#3]{#4}\hss} \ignorespaces \makeatother } % \def\BCirc(#1,#2)#3{ % % Draws a circle at (1,2) and radius 3 that is blanked out. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axowidth \axoscale bcirc showpage}} } % \def\GCirc(#1,#2)#3#4{ % % Draws a circle at (1,2) and radius 3 that is blanked out. % Then it fills the circle with a gray scale 4 (0 = black, 1 is white) % \put(\axoxoff,\axoyoff){\special{"#1 \axoxo add #2 \axoyo add #3 #4 \axowidth \axoscale gcirc showpage}} } % \def\CCirc(#1,#2)#3#4#5{ % % Draws a circle at (1,2) and radius 3 that is blanked out. % #4 is the color of the circle, #5 the color of the contents % \put(\axoxoff,\axoyoff){\special{"#5 #1 \axoxo add #2 \axoyo add #3 \axowidth \axoscale ccirc1 showpage}} \put(\axoxoff,\axoyoff){\special{"#4 #1 \axoxo add #2 \axoyo add #3 \axowidth \axoscale ccirc2 showpage}} } % \def\EBox(#1,#2)(#3,#4){ % % Draws a box with the left bottom at (x1,y1) and the right top % at (x2,y2). % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale box showpage}} } % \def\BBox(#1,#2)(#3,#4){ % % Draws a box with the left bottom at (x1,y1) and the right top % at (x2,y2). The box is blanked out. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale bbox showpage}} } % \def\GBox(#1,#2)(#3,#4)#5{ % % Draws a box with the left bottom at (x1,y1) and the right top % at (x2,y2). The box is blanked out and then filled with gray 5 % (0 is black, 1 is white) % \put(\axoxoff,\axoyoff){\special{"#1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 \axowidth \axoscale gbox showpage}} } % \def\CBox(#1,#2)(#3,#4)#5#6{ % % Draws a box with the left bottom at (x1,y1) and the right top % at (x2,y2). The color of the box is #5, the background is #6 % \put(\axoxoff,\axoyoff){\special{"#6 #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale cbox1 showpage}} \put(\axoxoff,\axoyoff){\special{"#5 #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add \axowidth \axoscale cbox2 showpage}} } % \def\Boxc(#1,#2)(#3,#4){ % % Draws a box with the center at (x1,y1). % The width and height are (3,4). % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #3 2 div sub #2 \axoyo add #4 2 div sub #1 \axoxo add #3 2 div add #2 \axoyo add #4 2 div add \axowidth \axoscale box showpage}} } % \def\BBoxc(#1,#2)(#3,#4){ % % Draws a box with the center at (x1,y1). % The width and height are (3,4). The contents are blanked out % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #3 2 div sub #2 \axoyo add #4 2 div sub #1 \axoxo add #3 2 div add #2 \axoyo add #4 2 div add \axowidth \axoscale bbox showpage}} } % \def\GBoxc(#1,#2)(#3,#4)#5{ % % Draws a box with the center at (x1,y1). % The width and height are (3,4). The contents are blanked out % Then the contents are filled with gray 5 (0 is black, 1 is white) % \put(\axoxoff,\axoyoff){\special{"#1 \axoxo add #3 2 div sub #2 \axoyo add #4 2 div sub #1 \axoxo add #3 2 div add #2 \axoyo add #4 2 div add #5 \axowidth \axoscale gbox showpage}} } % \def\CBoxc(#1,#2)(#3,#4)#5#6{ % % Draws a box with the center at (x1,y1). % The width and height are (3,4). The contents are blanked out % The color of the box is #5, the background is #6 % \put(\axoxoff,\axoyoff){\special{"#6 #1 \axoxo add #3 2 div sub #2 \axoyo add #4 2 div sub #1 \axoxo add #3 2 div add #2 \axoyo add #4 2 div add \axowidth \axoscale cbox1 showpage}} \put(\axoxoff,\axoyoff){\special{"#5 #1 \axoxo add #3 2 div sub #2 \axoyo add #4 2 div sub #1 \axoxo add #3 2 div add #2 \axoyo add #4 2 div add \axowidth \axoscale cbox2 showpage}} } % \def\SetWidth#1{\def\axowidth{#1 }} \def\SetScale#1{\def\axoscale{#1 }} \def\SetOffset(#1,#2){\def\axoxoff{#1 } \def\axoyoff{#2 }} \def\SetScaledOffset(#1,#2){\def\axoxo{#1 } \def\axoyo{#2 }} % \def\pfont{Times-Roman } \def\fsize{10 } % \def\SetPFont#1#2{\def\pfont{#1 } \def\fsize{#2 }} % % Now some definitions to sort out the lt etc type of options in PText % \makeatletter \def\fmode{4 } \def\@l@{l} \def\@r@{r} \def\@t@{t} \def\@b@{b} \def\mymodetest#1{\ifx#1\end \let\next=\relax \else { \if#1\@r@\global\def\fmodeh{1 }\fi \if#1\@l@\global\def\fmodeh{-1 }\fi \if#1\@b@\global\def\fmodev{3 }\fi \if#1\@t@\global\def\fmodev{-3 }\fi } \let\next=\mymodetest\fi \next} \makeatother % \def\PText(#1,#2)(#3)[#4]#5{ % % Draws a postscript text in a postscript font. % Focal point is (1,2), rotation angle is 3, 4 is the mode (as in text) % and 5 is the text. % \def\fmodev{0 } \def\fmodeh{0 } \mymodetest#4\end \put(\axoxoff,\axoyoff){\makebox(0,0)[]{\special{"/\pfont findfont \fsize scalefont setfont \axocolor #1 \axoxo add #2 \axoyo add #3 \fmode \fmodev add \fmodeh add \fsize (#5) \axoscale ptext }}} } % \def\GOval(#1,#2)(#3,#4)(#5)#6{ % % Draws a colored oval that overwrites whatever was there. % Oval(x_center,y_center)(height,width)(rotation)(color) % \put(\axoxoff,\axoyoff){\special{"#1 \axoxo add #2 \axoyo add #3 #4 #5 #6 \axowidth \axoscale goval showpage}} } % \def\COval(#1,#2)(#3,#4)(#5)#6#7{ % % Draws a colored oval that overwrites whatever was there. % Oval(x_center,y_center)(height,width)(rotation){color1}{color2} % \put(\axoxoff,\axoyoff){\special{"#7 #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale coval1 showpage}} \put(\axoxoff,\axoyoff){\special{"#6 #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale coval2 showpage}} } % \def\Oval(#1,#2)(#3,#4)(#5){ % % Draws an oval that does not overwrite whatever was there. % Oval(x_center,y_center)(height,width)(rotation) % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 #4 #5 \axowidth \axoscale oval showpage}} } % \let\eind=] \def\DashCurve#1#2{\put(\axoxoff,\axoyoff){\special{"\axocolor [ \kromme#1] #2 \axowidth \axoscale makedashcurve showpage}}} \def\Curve#1{\put(\axoxoff,\axoyoff){\special{"\axocolor [ \kromme#1] \axowidth \axoscale makecurve showpage}}} \def\kromme(#1,#2)#3{#1 \axoxo add #2 \axoyo add \ifx #3\eind\else \expandafter\kromme\fi#3} % \def\LogAxis(#1,#2)(#3,#4)(#5,#6,#7,#8){ % % Draws a line with logarithmic hash marks along it. % LogAxis(x1,y1)(x2,y2)(num_logs,hashsize,offset,width) % The line is from (x1,y1) to (x2,y2) and the marks are on the left side % when hashsize is positive, and right when it is negative. % num_logs is the number of orders of magnitude and offset is the number % at which one starts at (x1,y1) (like if offset=2 we start at 2) % When offset is 0 we start at 1. Width is the linewidth. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 #6 #7 #8 \axoscale logaxis showpage}} } % \def\LinAxis(#1,#2)(#3,#4)(#5,#6,#7,#8,#9){ % % Draws a line with linear hash marks along it. % LinAxis(x1,y1)(x2,y2)(num_decs,per_dec,hashsize,offset,width) % The line is from (x1,y1) to (x2,y2) and the marks are on the left side % when hashsize is positive, and right when it is negative. % num_decs is the number of accented marks, per_dec the number of % divisions between them and offset is the number % at which one starts at (x1,y1) (like if offset=2 we start at the second % small mark) Width is the linewidth. % \put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo add #3 \axoxo add #4 \axoyo add #5 #6 #7 #8 #9 \axoscale linaxis showpage}} } % \input rotate.tex \makeatletter % \def\rText(#1,#2)[#3][#4]#5{ % % Draws rotated text at (1,2). Argument 3 is l,r or c indicating whether % the text is left adjusted, right adjusted or centered. % 4 is the rotation angle and 5 is of course the text. % \ifnum\firstcall=1\global\def\firstcall{0}\rText(-10000,#2)[#3][]{#5}\fi \dimen2=\axoxoff \unitlength \dimen3=\axoyoff \unitlength \advance\dimen2 by #1 \unitlength \advance\dimen3 by #2 \unitlength \@killglue\raise\dimen3\hbox to \z@{\kern\dimen2 \makebox(0,0)[#3]{ \ifx#4l{\setbox3=\hbox{#5}\rotl{3}}\else{ \ifx#4r{\setbox3=\hbox{#5}\rotr{3}}\else{ \ifx#4u{\setbox3=\hbox{#5}\rotu{3}}\else{#5}\fi}\fi}\fi}\hss} \ignorespaces } \makeatother % \def\BText(#1,#2)#3{ % % Draws a box with the center at (x1,y1) and postscript text in it. % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont \axocolor #1 \axoxo add #2 \axoyo add (#3) \fsize \axowidth \axoscale btext showpage}} } % \def\GText(#1,#2)#3#4{ % % Draws a box with the center at (x1,y1) and postscript(#4) text in it. % The grayness of the box is given by #3 % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #1 \axoxo add #2 \axoyo add #3 (#4) \fsize \axowidth \axoscale gtext showpage}} } % \def\CText(#1,#2)#3#4#5{ % % Draws a box with the center at (x1,y1) and postscript(#5) text in it. % The color of box and text is in #3 % The color of the background is in #4 % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #4 #1 \axoxo add #2 \axoyo add (#5) \fsize \axowidth \axoscale ctext1 showpage}} \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #3 #1 \axoxo add #2 \axoyo add (#5) \fsize \axowidth \axoscale ctext2 showpage}} } % \def\B2Text(#1,#2)#3#4{ % % Draws a box with the center at (x1,y1) and two lines of postscript % text in it. % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont \axocolor #1 \axoxo add #2 \axoyo add (#3) (#4) \fsize \axowidth \axoscale b2text showpage}} } % \def\G2Text(#1,#2)#3#4#5{ % % Draws a box with the center at (x1,y1) and two lines of postscript % text (#4 and #5) in it. % The grayness of the box is given by #3 % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #1 \axoxo add #2 \axoyo add #3 (#4) (#5) \fsize \axowidth \axoscale g2text showpage}} } % \def\C2Text(#1,#2)#3#4#5#6{ % % Draws a box with the center at (x1,y1) and two lines of postscript % text (#5 and #6) in it. % The color of the box and the text is given by #3 % The background color is given by #4 % \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #4 #1 \axoxo add #2 \axoyo add (#5) (#6) \fsize \axowidth \axoscale c2text1 showpage}} \put(\axoxoff,\axoyoff){\special{"/\pfont findfont \fsize scalefont setfont #3 #1 \axoxo add #2 \axoyo add (#5) (#6) \fsize \axowidth \axoscale c2text2 showpage}} } %===============================axoman.tex=============================% \documentstyle[11pt,a4,axodraw]{article} \def\KeyWord#1{$\backslash$\IfColor{$\!\!$\textRed{#1}\textBlack}{#1}$\!\!$} \begin{document} \begin{center} {\Huge \IfColor{\textRed{A}\textOrange{X}\textYellow{O}\textGreen {D}\textBlue{R}\textRoyalPurple{A}\textViolet{W}\textBlack$\!\!\!$}{AXODRAW}} \\ \vspace{3cm} {\LARGE J.A.M.Vermaseren} \\ \vspace{4mm} NIKHEF-H \\ P.O. Box 41882 \\ 1009 DB Amsterdam \\ \vspace{5mm} \end{center} \vspace{5cm} \begin{abstract} Axodraw is a set of drawing primitives for use in \LaTeX. These can be used for the drawing of Feynman diagrams, flow charts and simple graphics. Because it uses postscript for its drawing commands it works only in combination with the dvips of Radical Eye Software which is presently the most popular dvips program. More will be added in the future. It allows whole articles including their pictures to be contained in a single file, thereby making it easier to exchange the article file by e-mail. The current version\footnote{An earlier version of Axodraw was published in Comp. Phys. Comm. 83 (1994) 45.} supports color according to the scheme implemented in the file colordvi.sty which comes with most \TeX{} distributions. \end{abstract} \newpage \section{Using Axodraw} The file axodraw.sty is a style file for \LaTeX{}. It should be included in the documentstyle statement at the beginning of the document. An example would be: \IfColor{\textBlue}{} \begin{verbatim} \documentstyle[a4,11pt,axodraw]{article} \end{verbatim} \IfColor{\textBlack}{} Because axodraw.sty reads also the epsf.sty file that comes with many implementations of \TeX{} and in particular those that rely on the dvips program by Radical Eye Software for the printing, this file should be present in the system. If this file is not available one should obtain it from another system. The file colordvi.sty is also read, but if it is not present there will be no error. The user should just not use color in that case. The author feels in no way responsible for the problems that may occur when a different dvi-to-postscript program is used. The drawing is actually done in postscript. Because the above mentioned dvi-to-postscript converter allows the inclusion of postscript code the graphics primitives have been included in the file axodraw.sty in terms of postscript. If another postscript converter is used, one may have to adapt the syntax of the inclusion of this code to the local system. The commands of Axodraw should be executed inside either the picture or the figure environment. Inside this environment it is possible to place objects at arbitrary positions and put text between them. In principle one could try to draw objects with the facilities of \LaTeX{} itself, but it turns out that the commands in the picture environment are not very powerful. Axodraw gives good extensions of them. An example would be \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(300,100)(0,0) \SetColor{Red} \GlueArc(150,50)(40,0,180){5}{8} \SetColor{Green} \GlueArc(150,50)(40,180,360){5}{8} \SetColor{Blue} \Gluon(50,50)(110,50){5}{4} \Vertex(110,50){2} \Gluon(190,50)(250,50){5}{4} \Vertex(190,50){2} \end{picture} \\ {\sl A gluon loop diagram} \end{center} \end{verbatim} \IfColor{\textBlack}{} This code would result in: \begin{center} \begin{picture}(300,100)(0,0) \SetColor{Red} \GlueArc(150,50)(40,0,180){5}{8} \SetColor{Green} \GlueArc(150,50)(40,180,360){5}{8} \SetColor{Blue} \Gluon(50,50)(110,50){5}{4} \Vertex(110,50){2} \Gluon(190,50)(250,50){5}{4} \Vertex(190,50){2} \end{picture} \\ {\sl A gluon loop diagram} \end{center} The syntax and the meaning of these command are explained in the next section. One should note that all coordinates are presented in units of 1 point. There are 72 points in an inch. It is possible to use scale transformations if these units are not convenient. Currently the primitives are mainly useful for the drawing of Feynman diagrams and the drawing of flowcharts. This means that the commands were designed to draw a number of these graphs. Of course many more things can be drawn with them, like scatter plots, histograms etc. The current manual uses only those color commands that are safe on systems that do not have the required colordvi.sty file. It should however be clear from the examples how to use the other features. To allow the creation of complicated color commands that will work also in the absence of the colordvi.sty file there is a macro IfColor which is described below with the other commands. \section{The commands} The commands that are currently available in Axodraw are (in alphabetic order): \begin{itemize} \item \KeyWord{ArrowArc}(x,y)(r,$\phi_1$,$\phi_2$) \hfill \\ Draws an arc segment centered around (x,y). The radius is r. The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. In the middle of the segment there will be an arrow. \item \KeyWord{ArrowArcn}(x,y)(radius,$\phi_1$,$\phi_2$) \hfill \\ Draws an arc segment centered around (x,y). The radius is r. The arc-segment runs clockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. In the middle of the segment there will be an arrow. \item \KeyWord{ArrowLine}($x_1$,$y_1$)($x_2$,$y_2$) \hfill \\ Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$). There will be an arrow in the middle of the line. \item \KeyWord{BBox}($x_1$,$y_1$)($x_2$,$y_2$) \hfill \\ Draws a box of which the contents are blanked out. This means that anything that was present at the position of the box will be overwritten. The lower left corner of the box is at ($x_1$,$y_1$) and ($x_2$,$y_2$) is the upper right corner of the box. \item \KeyWord{BBoxc}(x,y)(width,height) \hfill \\ Draws a box of which the contents are blanked out. This means that anything that was present at the position of the box will be overwritten. The center of the box is at (x,y). Width and height refer to the full width and the full height of the box. \item \KeyWord{BCirc}(x,y)\{r\} \hfill \\ Draws a circle of which the contents are blanked out. This means that anything that was present at the position of the circle will be overwritten. The center of the circle is at (x,y). r is its radius. \item \KeyWord{Boxc}(x,y)(width,height) \hfill \\ Draws a box. The center of the box is at (x,y). Width and height refer to the full width and the full height of the box. \item \KeyWord{BText}(x,y)\{text\} \hfill \\ Draws a box with one line of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a BBox in that it blanks out whatever was at the position of the box. \item \KeyWord{B2Text}(x,y)\{text1\}\{text2\} \hfill \\ Draws a box with two lines of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a BBox in that it blanks out whatever was at the position of the box. \item \KeyWord{CArc}(x,y)(radius,$\phi_1$,$\phi_2$) \hfill \\ Draws an arc segment centered around (x,y). The radius is r. The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. \item \KeyWord{CBox}($x_1$,$y_1$)($x_2$,$y_2$)\{color1\}\{color2\} \hfill \\ Draws a box. The lower left corner of the box is at ($x_1$,$y_1$) and ($x_2$,$y_2$) is the upper right corner of the box. The contents of the box are lost. The color of the box will be color1 and the color of the background inside the box will be color2. \item \KeyWord{CBoxc}(x,y)(width,height)\{color1\}\{color2\} \hfill \\ Draws a box of which the contents are blanked out. This means that anything that was present at the position of the box will be overwritten. The center of the box is at (x,y). Width and height refer to the full width and the full height of the box. The color of the box will be color1 and the color of the background inside the box will be color2. \item \KeyWord{CCirc}(x,y)\{radius\}\{color1\}\{color2\} \hfill \\ Draws a circle around (x,y) with radius r. The contents of the circle are lost. The color of the box will be color1 and the color of the background inside the box will be color2. \item \KeyWord{COval}(x,y)(h,w)($\phi$)\{color1\}\{color2\} \hfill \\ Draws an oval with an internal color indicated by color2. The oval itself has the color color1. The center of the oval is given by (x,y). Its height is h, and the width is w. In addition the oval can be rotated counterclockwise over $\phi$ degrees. The oval overwrites anything that used to be in its position. \item \KeyWord{CText}(x,y)\{color1\}\{color2\}\{text\} \hfill \\ Draws a box with one line of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a CBox in that it blanks out whatever was at the position of the box. The color of the box and the text inside is color1 and the background inside has the color color2. \item \KeyWord{C2Text}(x,y)\{color1\}\{color2\}\{text1\}\{text2\} \hfill \\ Draws a box with two lines of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a CBox in that it blanks out whatever was at the position of the box. The color of the box and the text inside is color1 and the background inside has the color color2. \item \KeyWord{Curve}\{$(x_1,y_1)(x_2,y_2)\cdots(x_n,y_n)$\} \hfill \\ Draws a curve through the given points. The x-values are supposed to be in ascending order. The curve is a combination of quadratic and third order segments and is continuous in its first and second derivatives. \item \KeyWord{DashArrowArc}(x,y)(r,$\phi_1$,$\phi_2$)\{dashsize\} \hfill \\ Draws a dashed arc segment centered around (x,y). The radius is r. The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. In the middle of the segment there will be an arrow. The size of the dashes is approximately equal to `dashsize'. \item \KeyWord{DashArrowArcn}(x,y)(radius,$\phi_1$,$\phi_2$)\{dashsize\} \hfill \\ Draws a dashed arc segment centered around (x,y). The radius is r. The arc-segment runs clockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. In the middle of the segment there will be an arrow. The size of the dashes is approximately equal to `dashsize'. \item \KeyWord{DashArrowLine}($x_1$,$y_1$)($x_2$,$y_2$)\{dashsize\} \hfill \\ Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$) with a dashed pattern. The size of the black parts of the pattern is given by `dashsize'. The alternating pieces have equal length. The size of the pattern is adjusted so that both the begin and the end are black. Halfway the line there is an arrow. \item \KeyWord{DashCArc}(x,y)(radius,$\phi_1$,$\phi_2$)\{dashsize\} \hfill \\ Draws a dashed arc segment centered around (x,y). The radius is r. The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. The size of the dashes is determined by `dashsize'. This size is adjusted somewhat to make the result look nice. \item \KeyWord{DashCurve}\{$(x_1,y_1)(x_2,y_2)\cdots(x_n,y_n)$\}\{ dashsize\} \hfill \\ Draws a dashed curve through the given points. The x-values are supposed to be in ascending order. The curve is a combination of quadratic and third order segments. The size of the black parts and the white parts will be approximately `dashsize' each. Some adjustment takes place to make the pattern come out right at the endpoints. \item \KeyWord{DashLine}($x_1$,$y_1$)($x_2$,$y_2$)\{dashsize\} \hfill \\ Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$) with a dashed pattern. The size of the black parts of the pattern is given by `dashsize'. The alternating pieces have equal length. The size of the pattern is adjusted so that both the begin and the end are black. \item \KeyWord{EBox}($x_1$,$y_1$)($x_2$,$y_2$) \hfill \\ Draws a box. The lower left corner of the box is at ($x_1$,$y_1$) and ($x_2$,$y_2$) is the upper right corner of the box. \item \KeyWord{IfColor}\{arg1\}\{arg2\} \hfill \\ If the file colordvi.sty is present the first argument will be executed. If this file is not present the second argument will be executed. For examples, see some of the figures. This command can also be used in the regular text of the \LaTeX{} file. \item \KeyWord{GBox}($x_1$,$y_1$)($x_2$,$y_2$)\{grayscale\} \hfill \\ Draws a box. The lower left corner of the box is at ($x_1$,$y_1$) and ($x_2$,$y_2$) is the upper right corner of the box. The contents of the box are lost. They are overwritten with a color gray that is indicated by the parameter `grayscale'. This parameter can have values ranging from 0 (black) to 1 (white). \item \KeyWord{GBoxc}(x,y)(width,height)\{grayscale\} \hfill \\ Draws a box. The center of the box is at (x,y). Width and height refer to the full width and the full height of the box. The contents of the box are lost. They are overwritten with a color gray that is indicated by the parameter `grayscale'. This parameter can have values ranging from 0 (black) to 1 (white). \item \KeyWord{GCirc}(x,y)\{radius\}\{grayscale\} \hfill \\ Draws a circle around (x,y) with radius r. The contents of the circle are lost. They are overwritten with a color gray that is indicated by the parameter `grayscale'. This parameter can have values ranging from 0 (black) to 1 (white). \item \KeyWord{GlueArc}(x,y)(r,$\phi_1$,$\phi_2$)\{amplitude\}\{windings\} \hfill \\ Draws a gluon on an arc-segment. The center of the arc is (x,y) and r is its radius. The arc segment runs counterclockwise from $\phi_1$ to $\phi_2$. The width of the gluon is twice `amplitude', and the number of windings is given by the last parameter. Note that whether the curls are inside or outside can be influenced with the sign of the amplitude. When it is positive the curls are on the inside. \item \KeyWord{Gluon}($x_1$,$y_1$)($x_2$,$y_2$)\{amplitude\}\{windings\} \hfill \\ Draws a gluon from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the gluon will be twice the value of `amplitude'. The number of windings is given by the last parameter. If this parameter is not an integer it will be rounded to an integer value. The side at which the windings lie is determined by the order of the two coordinates. Also a negative amplitude can change this side. \item \KeyWord{GOval}(x,y)(h,w)($\phi$)\{grayscale\} Draws an oval with an internal color indicated by grayscale. This parameter can have values ranging from 0 (black) to 1 (white). The center of the oval is given by (x,y). Its height is h, and the width is w. In addition the oval can be rotated counterclockwise over $\phi$ degrees. The oval overwrites anything that used to be in its position. \item \KeyWord{GText}(x,y)\{grayscale\}\{text\} \hfill \\ Draws a gray box with one line of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a BBox in that it blanks out whatever was at the position of the box. \item \KeyWord{G2Text}(x,y)\{grayscale\}\{text1\}\{text2\} \hfill \\ Draws a gray box with two lines of centered postscript text in it. The box is just big enough to fit around the text. The coordinates refer to the center of the box. The box is like a BBox in that it blanks out whatever was at the position of the box. \item \KeyWord{LinAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_D$,$d$,hashsize ,offset,width) \hfill \\ This draws a line to be used as an axis in a graph. Along the axis are hash marks. Going from the first coordinate to the second, the hash marks are on the left side if `hashsize', which is the size of the hash marks, is positive and on the right side if it is negative. $N_D$ is the number of `decades', indicated by fat hash marks, and $d$ is the number of subdivisions inside each decade. The offset parameter tells to which subdivision the first coordinate corresponds. When it is zero, this coordinate corresponds to a fat mark of a decade. Because axes have their own width, this is indicated with the last parameter. \item \KeyWord{Line}($x_1$,$y_1$)($x_2$,$y_2$) \hfill \\ Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$). \item \KeyWord{LogAxis}($x_1$,$y_1$)($x_2$,$y_2$)($N_L$,hashsize ,offset,width) \hfill \\ This draws a line to be used as an axis in a graph. Along the axis are hash marks. Going from the first coordinate to the second, the hash marks are on the left side if `hashsize', which is the size of the hash marks, is positive and on the right side if it is negative. $N_L$ is the number of orders of magnitude, indicated by fat hash marks. The offset parameter tells to which integer subdivision the first coordinate corresponds. When it is zero, this coordinate corresponds to a fat mark, which is identical to when the value would have been 1. Because axes have their own width, this is indicated with the last parameter. \item \KeyWord{LongArrow}($x_1$,$y_1$)($x_2$,$y_2$) \hfill \\ Draws a line from ($x_1$,$y_1$) to ($x_2$,$y_2$). There will be an arrow at the end of the line. \item \KeyWord{LongArrowArc}(x,y)(r,$\phi_1$,$\phi_2$) \hfill \\ Draws an arc segment centered around (x,y). The radius is r. The arc-segment runs counterclockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. At the end of the segment there will be an arrow. \item \KeyWord{LongArrowArcn}(x,y)(radius,$\phi_1$,$\phi_2$) \hfill \\ Draws an arc segment centered around (x,y). The radius is r. The arc-segment runs clockwise from $\phi_1$ to $\phi_2$. All angles are given in degrees. At the end of the segment there will be an arrow. \item \KeyWord{Oval}(x,y)(h,w)($\phi$) Draws an oval. The center of the oval is given by (x,y). Its height is h, and the width is w. In addition the oval can be rotated counterclockwise over $\phi$ degrees. The oval does not overwrite its contents. \item \KeyWord{Photon}($x_1$,$y_1$)($x_2$,$y_2$)\{amplitude\}\{wiggles\} \hfill \\ Draws a photon from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the photon will be twice the value of `amplitude'. The number of wiggles is given by the last parameter. If twice this parameter is not an integer it will be rounded to an integer value. Whether the first wiggle starts up or down can be influenced with the sign of the amplitude. \item \KeyWord{PhotonArc}(x,y)(r,$\phi_1$,$\phi_2$)\{amplitude\}\{wiggles\} \hfill \\ Draws a photon on an arc-segment. The center of the arc is (x,y) and r is its radius. The arc segment runs counterclockwise from $\phi_1$ to $\phi_2$. The width of the photon is twice `amplitude', and the number of wiggles is given by the last parameter. Note that the sign of the amplitude influences whether the photon starts going outside (positive) or starts going inside (negative). If one likes the photon to reach both endpoints from the outside the number of wiggles should be an integer plus 0.5. \item \KeyWord{PText}(x,y)($\phi$)$[$mode$]$\{text\} \hfill \\ Places a postscript text. The focal point is (x,y). The text is the last parameter. The mode parameter tells how the text should be positioned with respect to the focal point. If this parameter is omitted the center of the text will correspond to the focal point. Other options are: l for having the left side correspond to the focal point, r for having the right side correspond to it, t for having the top at the focal point and b for the bottom. One may combine two letters as in $[$bl$]$, as long as it makes sense. The parameter $\phi$ is a rotation angle. The text is written in the current postscript font. This font can be set with the SetPFont command. \item \KeyWord{rText}(x,y)$[$mode$][$rotation$]$\{text\} \hfill \\ Places a rotated text. The focal point is (x,y). The text is the last parameter. If the rotation parameter is the character l the text will be rotated left by 90 degrees, if it is an r it will be rotated to the right by 90 degrees and when it is the character u the text will be rotated by 180 degrees. When there is no character there is no rotation and the command is identical to the Text command. The mode parameter tells how the resulting box should be positioned with respect to the focal point. If this parameter is omitted the center of the box will correspond to the focal point. Other options are: l for having the left side correspond to the focal point, r for having the right side correspond to it, t for having the top at the focal point and b for the bottom. One may combine two letters as in $[$bl$]$, as long as it makes sense. \item \KeyWord{SetColor}\{NameOfColor\} \hfill \\ Sets the color for the next commands. This command onlt affects the current picture. In addition it does not affect the text commands that write in \TeX{} mode. Also the commands that draw gray boxes are not affected. For influencing the color of the \TeX{} or \LaTeX{} output one can use the commands mentioned in the colordvi.sty file. \item \KeyWord{SetPFont}\{fontname\}\{fontsize\} \hfill \\ Sets the postscript font to a given type and scale. \item \KeyWord{SetScale}\{scalevalue\} \hfill \\ Changes the scale of all graphics operations. Unfortunately it does not change the scale of the text operations (yet?). A `scalevalue' of 1 is the default. It is allowed to use floating point values. \item \KeyWord{SetOffset}(x\_offset,y\_offset) \hfill \\ Adds the offset values to all coordinates at the \TeX{} level. This makes it easier to move figures around. \item \KeyWord{SetScaledOffset}(x\_offset,y\_offset) \hfill \\ Adds the offset values to all coordinates at the postscript level. This is done after scaling has been applied. Hence one can work with the scaled coordinates. This can be very handy when drawing curves. \item \KeyWord{SetWidth}\{widthvalue\} \hfill \\ Changes the linewidth in all graphics operations. It does not change the linewidth of the text operations. That is a matter of font selection. A `widthvalue' of 0.5 is the default. It is allowed to use floating point values. \item \KeyWord{Text}(x,y)$[$mode$]$\{text\} \hfill \\ Places a text. The focal point is (x,y). The text is the last parameter. The mode parameter tells how the text should be positioned with respect to the focal point. If this parameter is omitted the center of the text will correspond to the focal point. Other options are: l for having the left side correspond to the focal point, r for having the right side correspond to it, t for having the top at the focal point and b for the bottom. One may combine two letters as in $[$bl$]$, as long as it makes sense. \item \KeyWord{Vertex}(x,y)\{r\} \hfill \\ Draws a fat dot at (x,y). The radius of the dot is given by r. \item \KeyWord{ZigZag}($x_1$,$y_1$)($x_2$,$y_2$)\{amplitude\}\{wiggles\} \hfill \\ Draws a zigzag line from ($x_1$,$y_1$) to ($x_2$,$y_2$). The width of the zigzagging will be twice the value of `amplitude'. The number of zigzags is given by the last parameter. If twice this parameter is not an integer it will be rounded to an integer value. Whether the first zigzag starts up or down can be influenced with the sign of the amplitude. \end{itemize} A note about color. The names of the colors can be found in the local file colordvi.sty or colordvi.tex. This file gives also the commands that allow the user to change the color of the text. \section{Examples} Although the previous section contains all the commands and their proper syntax a few examples may be helpful. \subsection{Text modes} The meaning of the mode characters in the text commands can best be demonstrated. The statements \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(300,100)(0,0) \SetColor{BrickRed} \CArc(50,75)(2,0,360) \Text(50,75)[lt]{left-top} \CArc(50,50)(2,0,360) \Text(50,50)[l]{left-center} \CArc(50,25)(2,0,360) \Text(50,25)[lb]{left-bottom} \CArc(150,75)(2,0,360) \Text(150,75)[t]{center-top} \CArc(150,50)(2,0,360) \Text(150,50)[]{center-center} \CArc(150,25)(2,0,360) \Text(150,25)[b]{center-bottom} \CArc(250,75)(2,0,360) \Text(250,75)[rt]{right-top} \CArc(250,50)(2,0,360) \Text(250,50)[r]{right-center} \CArc(250,25)(2,0,360) \Text(250,25)[rb]{right-bottom} \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack}{} produce 9 texts and for each the focal point is indicated by a little circle. It looks like \begin{center} \begin{picture}(300,100)(0,0) \SetColor{BrickRed} \CArc(50,75)(2,0,360) \Text(50,75)[lt]{left-top} \CArc(50,50)(2,0,360) \Text(50,50)[l]{left-center} \CArc(50,25)(2,0,360) \Text(50,25)[lb]{left-bottom} \CArc(150,75)(2,0,360) \Text(150,75)[t]{center-top} \CArc(150,50)(2,0,360) \Text(150,50)[]{center-center} \CArc(150,25)(2,0,360) \Text(150,25)[b]{center-bottom} \CArc(250,75)(2,0,360) \Text(250,75)[rt]{right-top} \CArc(250,50)(2,0,360) \Text(250,50)[r]{right-center} \CArc(250,25)(2,0,360) \Text(250,25)[rb]{right-bottom} \end{picture} \end{center} This illustrates exactly all the combinations of the mode characters and what their effects are. The commands $\backslash$Text and $\backslash$rText give a tex according to \LaTeX{}. This text is insensitive to the scaling commands, and the color of the text should be set with the regular color commands given in colordvi.sty. The text in the $\backslash$PText command (and the various boxes with text) is a postscript text. Such text is sensitive to the scaling commands and in addition the color is set with the $\backslash$SetColor command or in the command itself (in the case of the boxes). In the case of \LaTeX{} text it can of course contain different fonts, math mode and all those little things that are usually easier in \LaTeX{} than in postscript. \subsection{The windings of a gluon} Gluons are traditionally represented by a two dimensional projection of a helix. Actually close inspection of some pretty gluons reveals that it is usually not quite a helix. Hence the gluons in Axodraw are also not quite helices. In addition one may notice that the begin and end points deviate slightly from the regular windings. This makes it more in agreement with hand drawn gluons. When a gluon is drawn, one needs not only its begin and end points but there is an amplitude connected to this almost helix, and in addition there are windings. The number of windings is the number of curls that the gluon will have. Different people may prefer different densities of curls. This can effect the appearance considerably: \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(330,100)(0,0) \SetColor{Red} \Gluon(25,15)(25,95){5}{4} \Text(25,7)[]{4 windings} \Gluon(95,15)(95,95){5}{5} \Text(95,7)[]{5 windings} \Gluon(165,15)(165,95){5}{6} \Text(165,7)[]{6 windings} \Gluon(235,15)(235,95){5}{7} \Text(235,7)[]{7 windings} \Gluon(305,15)(305,95){5}{8} \Text(305,7)[]{8 windings} \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack}{} This code results in: \begin{center} \begin{picture}(330,100)(0,0) \SetColor{Red} \Gluon(25,15)(25,95){5}{4} \Text(25,7)[]{4 windings} \Gluon(95,15)(95,95){5}{5} \Text(95,7)[]{5 windings} \Gluon(165,15)(165,95){5}{6} \Text(165,7)[]{6 windings} \Gluon(235,15)(235,95){5}{7} \Text(235,7)[]{7 windings} \Gluon(305,15)(305,95){5}{8} \Text(305,7)[]{8 windings} \end{picture} \end{center} The influence of the amplitude is also rather great. The user should experiment with it. There is however an aspect to the amplitude that should be discussed. For a straight gluon the amplitude can determine on which side the curls are. So does the direction of the gluon: \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(325,100)(0,0) \SetColor{Red} \Gluon(50,15)(50,95){5}{6} \Text(50,7)[]{amp $> 0$} \Text(40,50)[]{$\uparrow$} \Gluon(125,95)(125,15){5}{6} \Text(125,7)[]{amp $> 0$} \Text(115,50)[]{$\downarrow$} \Gluon(200,15)(200,95){-5}{6} \Text(200,7)[]{amp $< 0$} \Text(190,50)[]{$\uparrow$} \Gluon(275,95)(275,15){-5}{6} \Text(275,7)[]{amp $< 0$} \Text(265,50)[]{$\downarrow$} \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack}{} The picture gets the following appearance: \begin{center} \begin{picture}(325,100)(0,0) \SetColor{Red} \Gluon(50,15)(50,95){5}{6} \Text(50,7)[]{amp $> 0$} \Text(40,50)[]{$\uparrow$} \Gluon(125,95)(125,15){5}{6} \Text(125,7)[]{amp $> 0$} \Text(115,50)[]{$\downarrow$} \Gluon(200,15)(200,95){-5}{6} \Text(200,7)[]{amp $< 0$} \Text(190,50)[]{$\uparrow$} \Gluon(275,95)(275,15){-5}{6} \Text(275,7)[]{amp $< 0$} \Text(265,50)[]{$\downarrow$} \end{picture} \end{center} For straight gluons one does not need the option of the negative amplitude. It is however necessary for gluons on an arc segment. In that case the arc is always drawn in an anticlockwise direction. Hence the direction is fixed and only the amplitude is left as a tool for determining the side with the curls. \subsection{Scaling} Sometimes it is much easier to design a figure on a larger scale than it is needed in the eventual printing. In that case one can use a scale factor, either during the design or in the final result. We use the figure in the first section as an example: \IfColor{\textBlue}{} \begin{verbatim} \vspace{-10pt} \hfill \\ \SetScale{0.3} \begin{picture}(70,30)(0,13) \SetColor{Red} \GlueArc(120,50)(40,0,180){5}{8} \SetColor{Green} \GlueArc(120,50)(40,180,360){5}{8} \SetColor{Blue} \Gluon(20,50)(80,50){5}{4} \Vertex(80,50){2} \Gluon(160,50)(220,50){5}{4} \Vertex(160,50){2} \end{picture} $+$ others $ = C_A(\frac{5}{3}+\frac{31}{9}\epsilon) + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$ \vspace{10pt} \hfill \\ \end{verbatim} \IfColor{\textBlack}{} We have lowered the figure by 13 points (the (0,13) in the picture statement) to make it look nice with respect to the equal sign. The result is \vspace{-10pt} \hfill \\ \SetScale{0.3} \begin{picture}(70,30)(0,13) \SetColor{Red} \GlueArc(120,50)(40,0,180){5}{8} \SetColor{Green} \GlueArc(120,50)(40,180,360){5}{8} \SetColor{Blue} \Gluon(20,50)(80,50){5}{4} \Vertex(80,50){2} \Gluon(160,50)(220,50){5}{4} \Vertex(160,50){2} \end{picture} $+$ others $ = C_A(\frac{5}{3}+\frac{31}{9}\epsilon) + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$ \vspace{10pt} \hfill \\ \SetScale{1} This way it is rather straightforward to make whole pictorial equations. Of course some things are not scale invariant. The appreciation of a figure may be somewhat different when the scale is changed. In the above case one might consider changing the amplitude of the gluons a little bit. Changing this from 5 to 7 and at the same time reducing the number of windings from 4 to 3 for the straight gluons and from 8 to 7 for the gluons in the arcs gives \vspace{-10pt} \hfill \\ \SetScale{0.3} \begin{picture}(70,30)(0,13) \SetColor{Red} \GlueArc(120,50)(40,0,180){7}{7} \SetColor{Green} \GlueArc(120,50)(40,180,360){7}{7} \SetColor{Blue} \Gluon(20,50)(80,50){7}{3} \Vertex(80,50){2} \Gluon(160,50)(220,50){7}{3} \Vertex(160,50){2} \end{picture} $+$ others $ = C_A(\frac{5}{3}+\frac{31}{9}\epsilon) + n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$ \vspace{10pt} \hfill \\ \SetScale{1} At this scale this may please the eye more. There is one problem with scaling. Currently it is only possible to have text scale with the rest of a figure when the text has been printed with the PText command. This makes the typesetting more complicated, but the scaling of the \TeX{} pixel fonts would give rather poor results anyway. \subsection{Photons} When drawing photons one should take care that the number of wiggles is selected properly. Very often this number should be an integer plus $0.5$. This can be seen in the following example: \IfColor{\textBlue}{} \begin{verbatim} \begin{center}\begin{picture}(300,56)(0,0) \Vertex(180,10){1.5} \Vertex(120,10){1.5} \SetColor{Red} \ArrowLine(100,10)(200,10) \SetColor{Green} \LongArrowArc(150,10)(20,60,120) \SetColor{Brown} \PhotonArc(150,10)(30,0,180){4}{8.5} % 8.5 wiggles \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack}{} This gives the `proper' picture as it would usually drawn by hand: \begin{center}\begin{picture}(300,56)(0,0) \Vertex(180,10){1.5} \Vertex(120,10){1.5} \SetColor{Red} \ArrowLine(100,10)(200,10) \SetColor{Green} \LongArrowArc(150,10)(20,60,120) \SetColor{Brown} \PhotonArc(150,10)(30,0,180){4}{8.5} % 8.5 wiggles \end{picture} \end{center} When the number of wiggles is reduced to 8 we obtain: \begin{center}\begin{picture}(300,56)(0,0) \Vertex(180,10){1.5} \Vertex(120,10){1.5} \SetColor{Red} \ArrowLine(100,10)(200,10) \SetColor{Green} \LongArrowArc(150,10)(20,60,120) \SetColor{Brown} \PhotonArc(150,10)(30,0,180){4}{8} % 8 wiggles \end{picture} \end{center} This is not as nice. Somehow the symmetry is violated. One should also take care that the wiggles start in the proper way. If we make the amplitude negative we see that the photons are not `right' either: \begin{center}\begin{picture}(300,56)(0,0) \Vertex(180,10){1.5} \Vertex(120,10){1.5} \SetColor{Red} \ArrowLine(100,10)(200,10) \SetColor{Green} \LongArrowArc(150,10)(20,60,120) \SetColor{Brown} \PhotonArc(150,10)(30,0,180){-4}{8.5} % 8.5 wiggles \end{picture} \end{center} Sometimes these things require some experimenting. \subsection{Flowcharts} There are several commands for creating boxes with text in them. This can be a box with either one line of text or with two lines of text. The rest is just a matter of drawing lines and circle segments with arrows. If the text is to scale with the picture one needs to use the postscript fonts. The result of scaling the {\TeX} fonts is usually rather ugly, because these fonts are pixel fonts. Here we present an example. It might describe a system for the automatic computation of cross-sections: \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(320,320)(0,0) \SetPFont{Helvetica}{10} \SetScale{0.8} \SetColor{Magenta} \ArrowLine(200,40)(200,10) \ArrowLine(200,100)(200,40) \ArrowLine(200,150)(200,100) \ArrowLine(100,130)(200,100) \ArrowLine(85,95)(200,100) \ArrowLine(260,105)(200,100) \ArrowLine(250,135)(200,100) \ArrowLine(160,75)(200,100) \ArrowLine(200,100)(250,70) \ArrowLine(200,185)(200,150) \ArrowLine(200,220)(200,185) \ArrowLine(200,250)(200,220) \ArrowLine(240,263)(200,250) \ArrowLine(240,237)(200,250) \ArrowLine(200,285)(200,250) \ArrowLine(200,310)(200,285) \ArrowLine(200,335)(200,310) \ArrowLine(180,360)(200,335) \ArrowLine(200,385)(180,360) \ArrowLine(50,370)(180,360) \ArrowArc(200,247.5)(62.5,90,180) \ArrowArc(200,247.5)(62.5,180,270) \ArrowLine(210,385)(300,360) \ArrowLine(210,335)(300,360) \ArrowLine(80,300)(80,130) \ArrowLine(190,335)(80,300) \ArrowLine(190,385)(80,300) \ArrowLine(50,335)(80,300) \ArrowLine(300,360)(340,340) \ArrowArcn(205,347.5)(37.5,90,270) \SetColor{Blue} \BCirc(200,100){10} \BCirc(200,100){5} \BCirc(200,40){7.5} \BCirc(200,250){10} \BCirc(200,250){5} \BCirc(200,310){7.5} \BCirc(180,360){7.5} \BCirc(80,300){7.5} \BCirc(300,360){7.5} \IfColor{\CCirc(200,185){7.5}{Blue}{Yellow} }{\GCirc(200,185){7.5}{0.9}} \SetColor{Red} \BText(200,285){Form program} \BText(200,335){Diagrams} \BText(200,385){Model} \BText(200,10){events} \BText(80,95){Axolib} \BText(350,335){Pictures} \IfColor{\CText(137.5,247.5){Blue}{Yellow}{instructions} }{\GText(137.5,247.5){0.9}{instructions}} \B2Text(260,70){Cross-sections}{Histograms} \B2Text(140,75){Monte Carlo}{Routine} \B2Text(275,105){FF}{1 loop integrals} \IfColor{\C2Text(260,135){Blue}{Yellow}{Spiderlib}{Fortran/C} }{\G2Text(260,135){0.9}{Spiderlib}{Fortran/C}} \IfColor{\C2Text(200,150){Blue}{Yellow}{Matrix}{Element} }{\G2Text(200,150){0.9}{Matrix}{Element}} \B2Text(80,130){Kinematics}{Configuration} \IfColor{\C2Text(200,220){Blue}{Yellow}{Output}{Formula} }{\G2Text(200,220){0.9}{Output}{Formula}} \IfColor{\C2Text(260,263){Blue}{Yellow}{Spiderlib}{Form part} }{\G2Text(260,263){0.9}{Spiderlib}{Form part}} \IfColor{\C2Text(260,237){Blue}{Yellow}{FF support}{library} }{\G2Text(260,237){0.9}{FF support}{library}} \B2Text(40,370){Reaction}{selection} \B2Text(40,340){Specification}{Cuts, etc.} \SetColor{Orange} \PText(211,36)(0)[lb]{Event Generator} \PText(211,181)(0)[lb]{Code Generator} \PText(162,258)(0)[lb]{FORM} \PText(211,301)(0)[lb]{Form program construction} \PText(191,362)(0)[lb]{Diagram} \PText(191,352)(0)[lb]{Generator} \PText(311,370)(0)[lb]{Postscript} \PText(311,360)(0)[lb]{Generator} \PText(91,292)(0)[lb]{Kinematics} \PText(91,282)(0)[lb]{Generator} \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack}{} This gives the chart \begin{center} \begin{picture}(320,320)(0,0) \SetPFont{Helvetica}{10} \SetScale{0.8} \SetColor{Magenta} \ArrowLine(200,40)(200,10) \ArrowLine(200,100)(200,40) \ArrowLine(200,150)(200,100) \ArrowLine(100,130)(200,100) \ArrowLine(85,95)(200,100) \ArrowLine(260,105)(200,100) \ArrowLine(250,135)(200,100) \ArrowLine(160,75)(200,100) \ArrowLine(200,100)(250,70) \ArrowLine(200,185)(200,150) \ArrowLine(200,220)(200,185) \ArrowLine(200,250)(200,220) \ArrowLine(240,263)(200,250) \ArrowLine(240,237)(200,250) \ArrowLine(200,285)(200,250) \ArrowLine(200,310)(200,285) \ArrowLine(200,335)(200,310) \ArrowLine(180,360)(200,335) \ArrowLine(200,385)(180,360) \ArrowLine(50,370)(180,360) \ArrowArc(200,247.5)(62.5,90,180) \ArrowArc(200,247.5)(62.5,180,270) \ArrowLine(210,385)(300,360) \ArrowLine(210,335)(300,360) \ArrowLine(80,300)(80,130) \ArrowLine(190,335)(80,300) \ArrowLine(190,385)(80,300) \ArrowLine(50,335)(80,300) \ArrowLine(300,360)(340,340) \ArrowArcn(205,347.5)(37.5,90,270) \SetColor{Blue} \BCirc(200,100){10} \BCirc(200,100){5} \BCirc(200,40){7.5} \BCirc(200,250){10} \BCirc(200,250){5} \BCirc(200,310){7.5} \BCirc(180,360){7.5} \BCirc(80,300){7.5} \BCirc(300,360){7.5} \IfColor{\CCirc(200,185){7.5}{Blue}{Yellow} }{\GCirc(200,185){7.5}{0.9}} \SetColor{Red} \BText(200,285){Form program} \BText(200,335){Diagrams} \BText(200,385){Model} \BText(200,10){events} \BText(80,95){Axolib} \BText(350,335){Pictures} \IfColor{\CText(137.5,247.5){Blue}{Yellow}{instructions} }{\GText(137.5,247.5){0.9}{instructions}} \B2Text(260,70){Cross-sections}{Histograms} \B2Text(140,75){Monte Carlo}{Routine} \B2Text(275,105){FF}{1 loop integrals} \IfColor{\C2Text(260,135){Blue}{Yellow}{Spiderlib}{Fortran/C} }{\G2Text(260,135){0.9}{Spiderlib}{Fortran/C}} \IfColor{\C2Text(200,150){Blue}{Yellow}{Matrix}{Element} }{\G2Text(200,150){0.9}{Matrix}{Element}} \B2Text(80,130){Kinematics}{Configuration} \IfColor{\C2Text(200,220){Blue}{Yellow}{Output}{Formula} }{\G2Text(200,220){0.9}{Output}{Formula}} \IfColor{\C2Text(260,263){Blue}{Yellow}{Spiderlib}{Form part} }{\G2Text(260,263){0.9}{Spiderlib}{Form part}} \IfColor{\C2Text(260,237){Blue}{Yellow}{FF support}{library} }{\G2Text(260,237){0.9}{FF support}{library}} \B2Text(40,370){Reaction}{selection} \B2Text(40,340){Specification}{Cuts, etc.} \SetColor{Orange} \PText(211,36)(0)[lb]{Event Generator} \PText(211,181)(0)[lb]{Code Generator} \PText(162,258)(0)[lb]{FORM} \PText(211,301)(0)[lb]{Form program construction} \PText(191,362)(0)[lb]{Diagram} \PText(191,352)(0)[lb]{Generator} \PText(311,370)(0)[lb]{Postscript} \PText(311,360)(0)[lb]{Generator} \PText(91,292)(0)[lb]{Kinematics} \PText(91,282)(0)[lb]{Generator} \end{picture} \end{center} \subsection{Curves and graphs} Axodraw is equipped with a curve fitting facility that can draw smooth curves through a set of coordinates. Coupled to this is a set of commands to draw the axes that are typically needed for the use of graphs and histograms. An example of a complete picture would be \IfColor{\textBlue}{} \begin{verbatim} \begin{center} \begin{picture}(360,440)(0,0) \SetOffset(40,30) \LinAxis(0,0)(300,0)(3,10,5,0,1.5) \LinAxis(0,400)(300,400)(3,10,-5,0,1.5) \LogAxis(0,0)(0,400)(4,-5,2,1.5) \LogAxis(300,0)(300,400)(4,5,2,1.5) \SetScale{100.} \SetWidth{0.005} \SetColor{Blue} \Curve{(.1057001,1.2997)(.1057003,1.5399) (.1057006,1.6908)(.1057010,1.8019)(.1057030,2.0406) (.1057060,2.1911)(.1057100,2.3020)(.1057300,2.5403) (.1057600,2.6904)(.1058000,2.8007)(.1060000,3.0365) (.1080000,3.4512)(.1100000,3.5600)(.1200000,3.6950) (.1300000,3.6969)(.1500000,3.6308)(.1800000,3.5024) (.2200000,3.3413)(.3000000,3.0788)(.5000000,2.6374) (.8000000,2.2295)(1.0000000,2.0357)(1.3000000 ,1.8078)(1.6000000,1.6275)(2.0000000,1.4336) (2.5000000,1.2398)(3.0000000,1.0815)} \SetColor{Red} \DashCurve{(1.7853600,.0111)(1.7853800,.0228) (1.7854000,.0339)(1.7856000,.1218)(1.7860000,.2324) (1.7870000,.3821)(1.7900000,.5786)(1.8000000,.8089) (1.8200000,.9765)(1.8500000,1.0869)(1.9000000 ,1.1718)(2.0000000,1.2335)(2.1000000,1.2468) (2.2000000,1.2413)(2.4000000,1.2064) (2.7000000,1.1340)(3.0000000,1.0574)}{0.05} \SetScale{1.}\SetWidth{0.5} \SetColor{Blue} \Line(200,360)(270,360) \Text(195,360)[r]{\large$e^+e^-\rightarrow\mu^+\mu^-$} \SetColor{Red} \DashLine(200,330)(270,330){5} \Text(195,330)[r]{\large$e^+e^-\rightarrow\tau^+\tau^-$} \SetColor{Black} \Text(0,-10)[]{0} \Text(100,-10)[]{1} \Text(200,-10)[]{2} \Text(300,-10)[]{3} \Text(150,-25)[]{\large Beam energy in GeV} \Text(-10,70)[]{$1$} \Text(-10,170)[]{$10$} \Text(-10,270)[]{$10^2$} \Text(-10,370)[]{$10^3$} \rText(-25,220)[][l]{\Large$\sigma$ in nb} \ArrowLine(190,270)(160,300) \ArrowLine(160,240)(190,270) \ArrowLine(270,300)(240,270) \ArrowLine(240,270)(270,240) \Photon(190,270)(240,270){4}{4.5} \Vertex(190,270){1.5} \Vertex(240,270){1.5} \end{picture} \\ {\sl \hskip 10 pt Threshold effects for $\mu$ and $\tau$} \end{center} \end{verbatim} \IfColor{\textBlack}{} and the resulting picture would be \begin{center} \begin{picture}(360,440)(0,0) \SetOffset(40,30) \LinAxis(0,0)(300,0)(3,10,5,0,1.5) \LinAxis(0,400)(300,400)(3,10,-5,0,1.5) \LogAxis(0,0)(0,400)(4,-5,2,1.5) \LogAxis(300,0)(300,400)(4,5,2,1.5) \SetScale{100.} \SetWidth{0.005} \SetColor{Blue} \Curve{(.1057001,1.2997)(.1057003,1.5399) (.1057006,1.6908)(.1057010,1.8019)(.1057030,2.0406) (.1057060,2.1911)(.1057100,2.3020)(.1057300,2.5403) (.1057600,2.6904)(.1058000,2.8007)(.1060000,3.0365) (.1080000,3.4512)(.1100000,3.5600)(.1200000,3.6950) (.1300000,3.6969)(.1500000,3.6308)(.1800000,3.5024) (.2200000,3.3413)(.3000000,3.0788)(.5000000,2.6374) (.8000000,2.2295)(1.0000000,2.0357)(1.3000000 ,1.8078)(1.6000000,1.6275)(2.0000000,1.4336) (2.5000000,1.2398)(3.0000000,1.0815)} \SetColor{Red} \DashCurve{(1.7853600,.0111)(1.7853800,.0228) (1.7854000,.0339)(1.7856000,.1218)(1.7860000,.2324) (1.7870000,.3821)(1.7900000,.5786)(1.8000000,.8089) (1.8200000,.9765)(1.8500000,1.0869)(1.9000000 ,1.1718)(2.0000000,1.2335)(2.1000000,1.2468) (2.2000000,1.2413)(2.4000000,1.2064) (2.7000000,1.1340)(3.0000000,1.0574)}{0.05} \SetScale{1.}\SetWidth{0.5} \SetColor{Blue} \Line(200,360)(270,360) \Text(195,360)[r]{\large$e^+e^-\rightarrow\mu^+\mu^-$} \SetColor{Red} \DashLine(200,330)(270,330){5} \Text(195,330)[r]{\large$e^+e^-\rightarrow\tau^+\tau^-$} \SetColor{Black} \Text(0,-10)[]{0} \Text(100,-10)[]{1} \Text(200,-10)[]{2} \Text(300,-10)[]{3} \Text(150,-25)[]{\large Beam energy in GeV} \Text(-10,70)[]{$1$} \Text(-10,170)[]{$10$} \Text(-10,270)[]{$10^2$} \Text(-10,370)[]{$10^3$} \rText(-25,220)[][l]{\Large$\sigma$ in nb} \ArrowLine(190,270)(160,300) \ArrowLine(160,240)(190,270) \ArrowLine(270,300)(240,270) \ArrowLine(240,270)(270,240) \Photon(190,270)(240,270){4}{4.5} \Vertex(190,270){1.5} \Vertex(240,270){1.5} \end{picture} \\ {\sl \hskip 10 pt Threshold effects for $\mu$ and $\tau$} \end{center} Of course one can scale these pictures further, but because the scale factor has been used to enter the data points these should then be adapted too. Note that when the scale is blown up by a factor 100, the linewidth has to be scaled down or disasters will take place. Finally a playful example: \IfColor{\textBlue}{} \begin{verbatim} \begin{center}\begin{picture}(300,56)(0,0) \SetColor{Blue} \Line(100,25)(150,25) \SetColor{Green} \Gluon(150,25)(200,25){3}{6} \SetColor{Red} \Photon(150,35)(200,45){3}{6} \SetColor{Mahogany} \ZigZag(150,15)(200,5){3}{6} \IfColor{\COval(150,25)(20,10)(0){Black}{Yellow} }{\GOval(150,25)(20,10)(0){0.5}} \end{picture} \end{center} \end{verbatim} \IfColor{\textBlack{}}{}which results in \begin{center}\begin{picture}(300,56)(0,0) \SetColor{Blue} \Line(100,25)(150,25) \SetColor{Green} \Gluon(150,25)(200,25){3}{6} \SetColor{Red} \Photon(150,35)(200,45){3}{6} \SetColor{Mahogany} \ZigZag(150,15)(200,5){3}{6} \IfColor{\COval(150,25)(20,10)(0){Black}{Yellow} }{\GOval(150,25)(20,10)(0){0.5}} \end{picture} \end{center} Acknowledgement: The author wishes to thank G.J.van Oldenborgh for help with some of the \TeX{} macros. Axodraw can be obtained from the authors homepage: \IfColor{\textOliveGreen}{}{http://norma.nikhef.nl/$\sim$t68/axodraw}~ {\IfColor{\textBlack}{}$\!\!\!\!$.} Alternatively it is available by means of anonymous ftp from ftp.nikhef.nl. There it is located in the directory pub/form/axodraw. Commentary and suggestions should be sent to the author at t68\verb:@:nikhef.nl. \end{document} %=================================End of file===========================%