
The LATEX-PACK

Or LATEX-editing made easy

by Jörg Fischer
Version 0.5, August 13, 2002

http://nedit.gmxhome.de

http://nedit.gmxhome.de

Contents

Description 4

Notational Conventions 5

1 Introduction 6

2 Installation 10
2.1 Unix/Linux . 11
2.2 Windows (Cygwin Port) 12

2.2.1 Remark on X Defaults 13

3 Overview 15

4 Description of the Macros 18
4.1 Snippets . 20
4.2 Theorems . 20
4.3 Equations . 21
4.4 Matrices . 22
4.5 Lists . 23

4.6 Format and Sections 23
4.7 Expander Macros . 23

4.7.1 Remark . 28
4.8 Word-/Code Completion 29
4.9 Labels, Commands and Sectioning 30
4.10 Running TEX and Previewers 31
4.11 Source Specials . 33
4.12 Main File and Bookmarks 34
4.13 Comments . 35
4.14 Insert . 35
4.15 Dollars, Brackets and the like 36
4.16 Help/Assistant . 38
4.17 Spell-Checker Handling 39

5 General Remarks 40

6 Changes – what’s new 42

7 Technical Notes about NEdit. 46
7.1 Key Bindings . 46
7.2 Recent Developments 48

Description

The LATEX-pack is a package or set of macros, i.e., small programs,
written in the NEdit macro or scripting language. It will turn NEdit,
the Nirvana text editor, into an advanced LATEX editor. NEdit ver-
sion 5.2 is required, version 5.3 is recommended. NEdit is a Unix
program for the X Window System under GPL. It is free to use and
open source. You can download the latest version from NEdit.org.

Notice, that this manual may partly be not up to date – please, be
patient. For a short note on what’s new, go to 6. Notice that some
macros require NEdit to be in server mode (you get this by starting
NEdit with nedit -server or nc -noask – to drop the -noask set
nc.autoStart: True in your X resource file), see 4.10 and 4.16.

Notice also that there is a set of example files to get you started
quickly. It illustrates the basic features of the LATEX-pack, containing
editing mathematical equations and multi-file documents (references,
sectioning, bookmarks). You should have a look at it !

http://nedit.org

Notational Conventions

I will try to keep to the following notations, in order to ease reading:

• Keys are written in small capital letters, e.g., shift+space
means to hit the space key while holding the shift key.

• Names of files and directories are enclosed in ‘.’, e.g., ‘.nedit’.

• Names of menu entries are enclosed in “.”,e.g., “Run>Preview”.

• Commands, variables and generally source code are written in
typeface, e.g., nedit -import .nedit.

• Emphasized words are italic and very important points are red.

1. Introduction

At first, I didn’t want to write a manual at all. I don’t like having
to read long manuals to learn how to use something. The auc-TEX
manual starts like this:

Although auc-TEX contains a large number of features,
there are no reasons to despair. You can continue to write
TEX and LATEX documents the way you are used to, and
only start using the multiple features in small steps. auc-
TEX is not monolithic, each feature described in this man-
ual . . .

In my opinion the reason to despair is not that there are many
features — there are many features in LATEX itself. Also, everyone
knows that he can write his LATEX-files as before, so we do not need
auc-TEX, do we?

But seriously, in my view the problem, that the above manual tries
to disguise, is to figure out, how auc-TEX works and I assume that
this takes at least a lot of time. And then, does auc-TEX make editing
really quick and easy?

I am convinced that useful things have to be easy to use. That’s
the way this macro package is written. You can start using it without
having to learn some awkward handling. Just write your text, then
select it with the mouse and invoke a macro to let it do the rest.

Suppose, for example, that you want to give in a small 2×2-matrix
as text-formula with round brackets and the entries a and b in the
first row and c and d in the second row. It looks like this:

This is a small matrix
(

a b
c d

)
.

You do it in the following way: Directly after “This is a small
matrix” you type once1 $. Then you type a space b return c
space d. Then you select from a to d with the mouse and click the
right mouse button. In the so called Window Background menu that
shows up, you choose Matrices. A dialog menu pops up, where you
see the different types of brackets and below there is a row of buttons
labeled “OK”, “small”, “ltx”, “small-ltx” and “Cancel”. Select round
brackets and press the button labeled “small”.

1If “smart indent” is on.

In the same way (almost) all the actions are handled, i.e., for equa-
tions, lists, environments, format, snippets and so on. That’s all you
need to know to work with these macros!

I think learning by doing is fastest. That’s why there is a small
example file named ‘example.tex’, where you can try a few things out
for yourself in order to get you started.

Although you don’t need to read a manual to learn how to work
with the LATEX-pack macros, there are several other reasons to have
a manual. One reason is that things may not work and the manual
can help to figure out what goes wrong. So make sure to read in the
manual, if a macro shouldn’t work.

Notice further that the example above needs the AMS-LATEX pack-
age. Standardly the macros fill in the AMS-LATEX commands for ma-
trices and equations. That’s because I am working with AMS-LATEX
and this is just another reason to have this manual – the macros are
mostly suited to my needs and probably these will differ from your
needs. So you may wonder, why these macros are doing things this
way and not that way, and I feel there has to be at least some expla-
nation about it and, above all, the remark that the macros can easily
be changed to suit your needs. Of course in that case you have to

learn a bit about NEdit, about its macro language and about regular
expressions (see 4.7.1, for example).

2. Installation

I assume that you already have NEdit. If not and you have some Unix
version available, go to NEdit.org and download version 5.2 or later.
NEdit consists only of a single binary, so there is no need of a special
installation. Only unpack and execute it.

You are running only MS Windows? Well, although I would prefer
Unix, you can run NEdit on MS Windows 95, 98, ME, NT, 2000
and probably XP, together with MiKTEX. (So do I, sometimes.) I
recommend, that you use the easy to install package from my home
page.

Although NEdit is a Unix program, it is fully working under Win-
dows. I mention this, because I’ve heard several times from folks who
like Emacs, that they don’t use the Emacs’ ports to Windows, because
they don’t work properly. I can’t comment on this further, because I
don’t use Emacs, neither on Unix nor on Windows. . .

There are slight differences in the installation of the LATEX-pack
between Unix and Windows. Notice that for the Windows part, I
assume that you are using the package from my home page.

http://nedit.org
http://nedit.gmxhome.de
http://nedit.gmxhome.de

2.1. Unix/Linux

Copy the files ‘dot nedit’ and ‘dot neditmacro’ as ‘.nedit’ and ‘.ned-
itmacro’ to your home directory, so that NEdit can find them.

Also, copy the folder ‘nedata’ to your home directory or set the
global variable $data in the file ‘.neditmacro’ appropriately. In prin-
ciple, that’s already all that you need to do to install it.

If there are already ‘.nedit’ and ‘.neditmacro’ files of your own,
you could temporarily rename these in order to see how the normal
setup of the LaTeX-Pack looks like. Since you probably want to keep
your NEdit preferences, you can do the following thereafter: Append
the contents of ‘dot neditmacro’ to your ‘.neditmacro’ file (if there
should be functions or global variables with the same name you have
to rename them.) Then import the ‘dot nedit’ file with the command
nedit -import dot nedit. The menu definitions will be placed on
top of your definitions. You have to save defaults once now, since this
is not done automatically (i.e., the imports would be lost if you restart
NEdit). Notice that the accelerator key definitions are not stored in
‘dot nedit’ in order to avoid interferences with key definitions in your
own preference file.

X defaults: In addition some X defaults have to be set. In order to

do this, copy the contents of ‘dot Xdefaults’ to your ‘.Xdefaults’ or
‘.Xresources’ file. You have to execute for example

xrdb -all .Xresources

or to log in again for the new settings to take effect.

2.2. Windows (Cygwin Port)

Open both the files ‘dot nedit’ and ‘dot neditmacro’ in NEdit! The file
‘dot neditmacro’ needs to be edited as described there. Then save the
file ‘dot nedit’ as ‘nedit.ini’ 2 to the NEdit home directory (confirm
the installation of the Cygwin port), thereby, and this is essential,
choosing Unix format! Do the same procedure to ‘dot neditmacro’,
i.e., save it as ‘neditmacro.nm’ in Unix format. If you don’t choose
Unix format, it is likely that the files are interpreted as DOS format, so
that NEdit can’t read them when restarting. This will lead to a whole
lot of error messages and a program stop. If you already should have
‘nedit.ini’ and ‘neditmacro.nm’ files, then what is described under
Unix applies here, too.

2If you use the binary from me!

Also, don’t forget to copy the folder ‘nedata’ to the NEdit home
directory.

Notice that there is a small shell script ‘yap-nc.sh’. This must be
copied to the ‘cygwin\bin’ folder, in order to use the ‘Run > LATEX’-
macro (4.10). Also ‘yap’ has to be set up appropriately, i.e., you find
the command line to invoke the editor in the file ‘yap-com.txt’.

X defaults: Under Windows the X defaults are set in the file ‘.nedit’,
because not all X servers will read the X default file. This is, by
the way, the reason for renaming the preferences files, so that the
Xdefaults won’t be overwritten when preferences are changed. So
save the contents of ‘dot Xdefaults’ as ‘.nedit’ to the NEdit home
directory.

2.2.1. Remark on X Defaults

If you are a pure MS Windows user, you probably wonder, what this
X defaults thing is about. NEdit is an application for the X Window
system, the standard graphics system under Unix, which is based
on the client/server model and is indeed independent of operating
systems. There are many X servers for Windows. In order to use
NEdit you’ll need some X server.

One of the advantages3 of the the X Window system is, that you can
have complete control over an application, for example what keyboard
handling is concerned. Have a look at the ‘dot Xdefaults’ file. It would
be new to me, if one has the same control over keys in MS Word. For
a useful application see 4.7.

3There are also some disadvantages.

3. Overview

After installation you will find the macros located at the Macro and
Window Background menu (which shows up when clicking the right
mouse button). You can customize them by going to “Preferences
> Default Settings > Customize Menus” and then select the type of
menu. Notice, that almost all macros are made language dependent,
that means you will see them only when editing LATEX-files.

With the macros contained in the LATEX-pack you can

• define named snippets, for inserting in your text,

• comment and uncomment parts of your file,

• define abbreviations for longer words or commands, that you
need to write often,

• let partly written words or commands be completed,

• insert matrices and equations in the easy way described in the
introduction,

• display lists of, e.g., the labels or the user-defined commands in,
and the sectioning of, your file,

• insert all kinds of environments, formattings, sections, tem-
plates, mathematical symbols, . . . ,

• put mathematics automatically at separate lines and let closing
brackets automatically be inserted.

In addition, since you will probably need to adapt the macros to
your needs and taste, there are some macros for use with the NEdit
macro language included. You can see them located at the Window
Background menu, showing up when right clicking the mouse, when
editing a NEdit macro file. These macros give you information about
the built-in macro function and variables you can use.

Notice in this context that some of the LATEX-pack-macros are of
general use. So expanding abbreviations is certainly not only good
for LATEX-editing. Indeed, the same macro is used to fill in constructs
like while- and for-loops of the NEdit-macro language while editing
‘*.nm’ files.

Moreover, a Tcl/Tk script called HelpSystem together with an on-

line help about LATEX was included, since this could (eventually4) be
more than only a browsable on-line help.

Independent from this, editing your files with NEdit will reduce the
amount of your errors dramatically, because there is a capable syntax
highlighting5 available. Notice, that there is an improved highlighting
pattern included in the package.

4It isn’t so far.
5Not only keyword coloring, please!

4. Description of the Macros

The LATEX-pack-macros need various data-files that are put in a sep-
arate folder named ‘nedata’ in the home directory. If you want to
change this name, open the file ‘.neditmacro’ in your home directory
and set the global variable $data appropriately.

Often you will not need to know much about the paticular macro
in order to use it. But notice that all of the macros are text files. You
can read them. You can read all of the files in the ‘nedata’ folder,
except for the few Gif-files, of course.

Notice that I do not consider the set of macros to be complete or
perfect. They are perhaps not even good.6 Although the whole auc-
TEX-distribution, including ref-TEX and the BibTEX-mode, could
be emulated with NEdit, this isn’t the intention of the LATEX-pack.
Especially the LATEX-pack contains no macros for formatting your
documents (because I think this is useless) and there is no automated
re-parsing of your documents or the attempt to implement automated
things in general (because in my experience you can’t get a program

6Although there are people around that try to make money out of something
lesser.

to do automatically what you want – it will mostly do automatically
what you don’t want).

Notice at this point that I did not program these macros for you.
These macros are mostly as I use them, so they have a strong tendency
toward mathematics, or better that kind of mathematics that I need
to write. There are other things added only to show how to get
them. But these things need probably improvements. So if you are
missing something or if you think some macros or even all are not
good enough, do not hesitate. Add your own macros or improve the
existing ones. There is no problem. You can freely distribute it. I
have put the whole package under GPL, but the reason for that is
only that I think that changing and redistributing shouldn’t be done
in a totally disordered way.

The intention of releasing such a set of macros is to give you a
starting point, to give you examples of how to do it. You needn’t be
afraid. The reason for choosing NEdit is that it is unbeaten for its
combination of functionality and ease-of-use. It’s macro language has
a learning curve of about half an hour (or perhaps one hour, if you
have never written programs yourself, as myself until I started with
this here).

4.1. Snippets

This macro lets you maintain a collection of named snippets. There
are several ways to insert often needed commands or constructs or
just parts of text that you need to write from time to time.

For regularly used commands that you don’t want to write again
and again, the automatic completion macro (expander) or the word-
/code completion macro are probably more adequate and faster. The
snippets macro is more for (longer) parts of text that you only need
to write time after time, so that you are more likely to forget about
them. That’s why you can give names to the snippets (instead of
just a short abbreviation) and the beginning and ending parts of the
snippets are shown together with the names in the list dialog menu
from which you choose them.

4.2. Theorems

Write your theorem, proposition or the like, slect the text thereafter
and invoke the macro by clicking the right mouse button and choosing
“Theorems” from the Window Background menu. Of course, what
you need to get filled in depends on your \newtheorem-definitions. So

you need the ‘theorem.dat’ data file. Or you could rewrite the macro
to look for the definitions in the file you are editing. (You could use
the “label”-macro for this, see 4.9.)

4.3. Equations

Only the AMS-LATEX versions of equations are supported, because
they are clearly better than the (pure) LATEX ones. The best way to
see how things work is to try the examples in the ‘example.tex’ file.

Here is a only short description. I’ve tried to make as much automa-
tion as possible. Normally you fill in only the entries of the equation
even without alignment mark (&). If your single equation doesn’t fit
on one line (in the TEX-output) you insert a newline (return key) at
the place where the equation should be split and write the next line
and so on. Thereafter you select the whole equation and invoke, as
usual, the “Equations” macro from the Window Background menu.
Select single equation and choose “OK” or “No-number”. Then the
macro will look first whether there is more than one line of input,
otherwise there isn’t much to do. If there is more than one line, the
macro knows that the equation must be split and needs alignment.

The alignment is done in the following way: Each line processed sep-
arately. First the macro looks for a semicolon. If found the first
semicolon is changed to a &. If no semicolon is found, the macro
checks for a binary relation and inserts a alignment mark (&) in front
of the first binary relation that is found in the line. If neither a semi-
colon nor a binary relation (you probably have to add some more
binary relations to the search string) is found, then a & is inserted at
the start of the line if it is not the first line. If nothing is selected, a
template is inserted at cursor position.

4.4. Matrices

Just give in the entries of your matrix, separate columns with a blank
space, if this is not possible, define a different separator, e.g., a semi-
colon.

Tables are supported only with a template under Insert misc-templ.
This is because I don’t need them usually. If you do you can take the
matrices macro as an example how to program a macro inserting tab-
ulars. If nothing is selected, a template is inserted at cursor position.

4.5. Lists

This is for quick inserting of various lists such as enumerations or
descriptions. You needn’t type in \item, that is done automatically.
Only hit the short-cut shift+return for a newline.

4.6. Format and Sections

Various font sizes and also the verbatim environments, footnotes and
quotation marks are inserted. This is mainly in case you forgot the
appropriate commands and otherwise would need to look them up
somewhere.

4.7. Expander Macros

The Expander macros are located at the macro menu. At the entry
“Expander” you can see the macros “Init”, “On”, “Off” and “Edit
dat”. Below these is a separator and the macros “lists on” and “lists
off”.

In order to check if they work initialize7 them with Alt+u or click
on “Init”. Then give in ’e and hit space. You should get an \epsilon
now. To see all the already defined abbreviations click on “Edit dat”or
hit ctrl+shift+e. You can add your own abbreviations or edit the
given ones. If you open the file where the abbreviations are stored
with the macro (ctrl+shift+e), edit and save it, the newly defined
abbreviations will be present without re-initialization. Otherwise, you
have to re-initialize.

The macros that you see there only initialize the Expander macro,
turn it on or off and edit the data file, where the abbreviations for ex-
pansion are stored. The entries “lists on” and “lists off” turn the lists
completion macro on or off. This is a small macro that automatically
inserts \item or \bibitem, when you are in a list environment such
as enumeration or thebibliography. It is not related to the automatic
completion macro and can be turned on or off separately. There is
nothing more to say about it.

What you can’t see in the menu are the macros that are doing the
work, i.e., you don’t see neither the automatic completion macro nor

7If you would like to initialize the expander macro automatically, set the global
variable $update at the start of the ‘.neditmacro’ file to one.

the list macro. This is because you needn’t execute them, so I’ve
hidden them.8

Execution of the completion macro is bound to the space key and
the list macro is bound to shift+return. That means, every time
you hit space or shift+return, not a blank or newline is inserted
in your document, but one of these macros is run.9 The binding of
space is done by way of key translations10, whereas shift+return
is bound as accelerator key. See 7.1 for the technical details about
this. If you believe it is dangerous to bind the completion macro to
space you can and should of course change the key bindings.

The automatic completion macro is generally usable to define ab-
breviations that the editor completes. There are several variations
of such macros around, one of them is the so-called expander. The

8This is simple. Set the menu entries for the macros to an undefined language
mode (I chose “@keys”, because the key-bindings have been re-defined for it), so
you can never see them in the menu.

9Don’t worry. These macros will not forget to insert a blank or newline in your
document.

10 For this reason you must add the contents of the ‘dot Xdefaults’ file to your
‘.Xdefaults’ file.

expander is described in detail at the NEdit home page.11 I’ve in-
cluded some of its features in this version. To see the abbreviations
that will be completed, click on “Edit dat”. This will open the file
‘expand $language_mode.dat’ in the ‘nedata’ folder. You can simply
edit this file, change abbreviations or add your own ones. Then save
the file and initialize. Note that to run the macro you must first exe-
cute “Init” from the menu or define a short cut for it. Then the file is
load to a string in memory, so that the file need not be opened every
time you hit the space key.

The expander’s features included are that you can recursively12 ex-
pand abbreviations and that you can expand an abbreviation with a
selection. Recursive expansion means the following: If you put an al-
ready defined abbreviation enclosed between |>...<| in the definition
of another abbreviation, then this field will be recursively expanded.
Moreover you can set the cursor at any place in the expansion by
putting an empty field |><| at the desired position. Also, you can
give in fields that aren’t defined as abbreviations. After expanding,

11Notice, that parts of the expander are external C programs.
12See the files ‘templates lat.dat’ and ‘persoenlich.dat’ for one possible applica-

tion of recursive expansion.

the first such field will be selected, so that you can type in your
text for the field. Afterward you can jump to the next such field
with “Next field” or define a short cut such as ctrl+x, for example.
Expansion with a selection means that you have the following situa-
tion: abbrev word, where abbrev is the abbreviation to expand and
word is some word. The cursor is directly after word. When you hit
ctrl+space now, then the word is taken as selection and the abbre-
viation is expanded. For example, you can define the abbreviation bg
as

\begin{|>s<|}
|><|
\end{|>s<|}

Then bg verbatim will be expanded – well, I think you understand
it. The |>s<| stands for the selection. But what when you would like
to have more than one word as selection? No problem, select all the
words you want behind the abbreviation and press ctrl+space.

Notice that there is a small problem, because the expansion macro
is bound to the space key. So hitting space directly after bg in the
above example will expand it before you can type in the rest. One

solution would be to have a different key binding and you can change
this to your taste. My solution is that with shift+space there will
be inserted a blank without the call to the expansion macro.

This solution is also useful, because the automatic completion macros
capitalize automatically the first word of a sentence, if you forgot to
do so. This will cause no pain for TEX-editing. If there is an abbre-
viation, e.g., e.g., you normally adjust spacing with ~ or \ , because
TEX interprets a dot as end of sentence. Or otherwise, again, you can
type shift+space after the abbreviation.

4.7.1. Remark

A remark on the correction macro above. This is done with the help
of regular expressions. What is this? I think this is best understood
by that easy example. Suppose you want to correct the first word of
a sentence, if you forgot to capitalize it. You could of course easily
search for a dot ending a sentence and also for a dot followed by a
space, but what then. There are quite a few letters in the alphabet. Of
course you could search for . a and then for . b and so on. But what
you are really searching for is a dot followed by a space and then a
letter. This is indeed a simple example of a search pattern. And such

search patterns are described with the help of regular expressions.
The regular expression describing this search pattern is \. \l, where
the dot is described by \. the space is described by itself and \l
stands for some single letter. Now have a look at the source of the
above macro!

4.8. Word-/Code Completion

In order to help you with your writing, there are the word- or code
completion macros. You write the start of your word or of a command
and invoke the macro with f4. The macro looks through your current
file and through external completion files, that you can define, and
completes the word. A list of English and German top words and a
LATEX-version of the German top words is already included. There
is also an example of a user-defined word completion file. Moreover,
there is a code completion file for LATEX-commands included.

Notice that the decision whether a word- or a code completion is
attempted is simple – if your word starts with a backslash, a code-
completion is done, otherwise it is a word completion.

Notice that for a completion file, a whole line is taken as comple-

tion, so that you can give in several words, where you need only to
write the start of the first word in your file and press f4 to get the
whole completion. If there are several possible completions, you can
cycle through them by pressing repeatedly f4 or you press f5 which
will show a list of all possible completions, where you can choose the
wished one. If you have set a main file, user-defined commands will
also be completed.

4.9. Labels, Commands and Sectioning

A common problem with larger files is for example that you need many
text references, which are created with the command \label (or, if we
think of pdf, with \hypertarget). Other examples are that you have
many user-defined macros or environments in your text (\newcommand
and \newenvironment, respectively).

Even if the file is not really large, you are likely to forget what
labels you have already created and where they are. Of course, you
can search them manually or let the TEX-compiler tell you that there
are double labels and then you must search and change the double
ones later on.

Better is, we let your computer work. So these macros will search for
labels and display an alphabetically ordered list of the names of your
labels (hyper-targets, sections, user defined commands or whatever
you like).

Often it is more comfortable to split large files into several smaller
ones for single chapters for example. Then one creates a main file
for the common declarations (user defined styles, commands and en-
vironments) and includes the files containing the actual text into the
main file with the commands \include or \input. So it is necessary
that the macros search recursively through all your include files. No-
tice that the included file names are expected to be kept in the same
folder as the main file. Notice that these macros might need further
customization.

4.10. Running TEX and Previewers

Notice that the “Run > LATEX” macro assumes, that you are running
NEdit through ‘nc’, the NEdit client, i.e., NEdit must be in server
mode. Otherwise opening an output window doesn’t work in the way
the macro does it (with a shell command invoking nc). So you could

change that, if you don’t want to run NEdit in server mode.
By the way, I’ve written these macros mainly for using under Win-

dows. Under Unix I work with a shell and set the environment variable
texedit to nc -noask -line %d %s.

If you have defined a main file, see 4.12, invoking “Run > LATEX”
will compile your main file, otherwise the current file is compiled. The
same holds for the preview macro.

Notice that these macros run with teTEX as well as with MiKTEX. If
you are running Windows, it is even assumed, that you use MiKTEX!
The previewer is defined as ‘yap’ and you can use source specials, i.e.,
clicking in the ‘yap’ window brings NEdit to the appropriate source
line, confirm the MiKTEXmanual. Make sure to set up ‘yap’ appro-
priately, see 2.2.

If you are missing something, such as running BibTEX, makeindex
or a “build” macro, the provided macros have enough information
how to do this yourself.

4.11. Source Specials

By Source Specials is meant, that line numbers and the names of
your source files are included in the Dvi output. This information
allows to relate pieces of output, i.e. paragraphs or formulas, with the
place in your source file that created the output. Thus by clicking
in the previewer window, you can jump to the appropriate place in
your source file. This is called reverse search. Moreover, it is also
possible to call the previewer from inside your editor to show the
output related to the current cursor position. This is called forward
search. In order to make use of reverse and forward search, you need
a Dvi file with source specials and a previewer that supports these.
Moreover, for forward search you need at least an editor that can call
external applications.

If you are running Windows and using MiKTEX, this is not much
of a problem. MiKTEX’s compiler supports the direct production of
Dvi files with source specials by way of a compiler option and ‘yap’
also supports source specials, both from version 1.2 on. So, you need
essentially only to tell ‘yap’ what editor to call.

If you are running Unix it is possible that you don’t have a recent
beta version of the teTEXdistribution. You can check with tex -help

whether a option for direct creation of source specials is supported
(something like -src). If not, the easiest way is to get the ‘poor
man’s solution’, that is the LATEX package ‘srcltx’, that if included
with \usepackage in your document creates a Dvi file with source
specials. Moreover, it is possible that the ‘xdvi’ version that you have
doesn’t support source specials (you need at least version 22.38), so
that you have to get the latest ‘xdvi’ version. But then you can use
source specials, too.

4.12. Main File and Bookmarks

This small macro let you define a main file. So if you are working on
larger projects, the labels, commands, sectioning, running TEX and
preview macros are more comfortable to use. The main file is defined
through the dialog. In the dialog there is a list of file names displayed
that either are currently open or have been bookmarked.

Especially, when working with multi-file documents or projects, it
will be comfortable to bookmark some of the files that you regularly
need. This is independent from the ‘Open previous’-list inside NEdit
that is constantly changing. It also allows to easily set the main file,

see above. You can bookmark the current file simply with Ctrl+b.
You can see a list of the bookmarked files to open a bookmarked file
or to delete an entry from the list with Shift+Ctrl+b.

4.13. Comments

These macros are for quoting or unquoting parts of your file. It is
just a slight variation of default macros included with NEdit. The
‘docstrip’ macro will delete all comments in a selection or in the whole
document.

The “ues2tex” macro has nothing to do with that. It is a macro
that changes the German umlaute to TEX-style and vice versa. This
can serve as an example for other things, too. I just did not know
where else to put it.

4.14. Insert

These macros simply insert environments, miscellaneous templates of
LATEX-constructs, symbols, mathematical symbols and BibTEX entries
in your text. If you miss more templates you can simply add them to
the data files.

Special note for the mathematical symbols. There are some editors
that try to impress you with a kind of graphical user interface, i.e.,
they show pictures of math symbols that you can click on and the
appropriate command is inserted in your text. Indeed, this is a rather
simple thing, as was shown by a small Tcl/Tk-script in a former release
of the LATEX-pack. Now, the help system, see 4.16, is used for such
things. The advantage compared to a program such as LATEX-helper
is that you only need Tcl/Tk and thus it can run everywhere (without
Gnome libraries for example).

4.15. Dollars, Brackets and the like

In order to ease editing TEX-files, NEdit’s standard key bindings are
changed by the LATEX-pack, for technical details about it see 7.1.

With this changed key bindings, the following will happen when
editing a TEX-file:

• Maths environments starting with $ are automatically placed at
new lines and an additional $ is inserted. The cursor will be
placed between the dollar signs.

• Maths environments starting with \[or \(are automatically
placed at new lines. The appropriate closing bracket is inserted
and the cursor is moved in between. You give in your equation
that then is placed at a new line, i.e., you needn’t type return,
this is done automatically.

• Generally typing in an open bracket produces the appropriate
closing bracket and the cursor is placed between the two brack-
ets.

• Typing in two underscores in a row will input sub and super
indices.

• Hitting Alt+” inserts US or German quotation marks (depend-
ing on language setting).

Notice that, if “Smart Indent” is turned on, you can move through
brackets or the dollar sign by just typing in spaces, i.e., typing in two
spaces in front of a closing bracket or the dollar sign will move the
cursor and the last space behind the bracket or the dollar sign. You
should type in a punctuation mark, that should come after a bracket

or dollar, inside the brackets or the dollars – moving through will take
it behind automatically.

4.16. Help/Assistant

There is an on-line help for LATEX included. This is based on a Tcl/Tk-
script of a Russian author, which is under GPL. For the details invoke
this help system from “Macro > Help > About Help”. You will need
Tcl/Tk installed on your system. Of course, it works on MS Windows,
too. Notice that you may change the command ‘wish’ in this case.

Another possibility to invoke this help system is from “Macro >
Insert > Greek letters”. This displays all Greek letters in the help
system and you can simply click on them in order to insert them
in your document. This insertion is done by an interaction of the
Tcl/Tk-script and the NEdit-macro language on the other side. Read
the file ‘latex.tcl’ for details. Notice that “Smart Indent” has to be
turned on and you have to run NEdit in server mode for this to work !

One of the advantages of the above approach is that everything is
free software and open source. You can read and write all the files.
The help system, i.e., the ‘*.help’ files are HTML-files with some

additional directives. The pictures of the Greek letters are Gif-files in
base64 encoding. You can do such things simply yourself.

4.17. Spell-Checker Handling

The problem when trying to spell-check your LATEX-document is, of
course, that there are many commands in. Some spell-checkers, like
Ispell, have a LATEX-mode to avoid the worst, but this says it all.
There are also commercial or proprietary software environments, that
have a spell-checking feature built-in. However, we are using free
software and create our LATEX-document with a pure text editor.

The natural approach to me seems to simply filter all of mathemat-
ics and other commands from your document before sending it to the
spell-checker, so that the spell-checker only needs to check the real
words as it should be. So, the main part of the spell-checker han-
dling macro is indeed a set of patterns (regular expressions) that are
supposed to strip off (most) of the LATEX-commands from your file.

Notice that you need either Ispell or Aspell installed on your system
to run this macro! Notice also that there is no claim that it is much
better than pure Ispell or Aspell in LATEX-mode – it is only an attempt.

5. General Remarks

These macros are only for use with NEdit. So you could say, that you
and many others are using different editors and therefore it is bad to
have something intended to help with editing LATEX-files, which can
only be used with a special editor. I’m not going to discuss about
what is the best editor. Also, I do not try to sell anything nor to
convince anybody of using NEdit for text editing.

My view is as follows: I had to choose an appropriate tool for the
purpose of making editing LATEX-files easy. I chose this editor, because
that purpose can be achieved with it.13 Perhaps there are other editors
around achieving that purpose, too. But this doesn’t make my choice
wrong, because NEdit makes editing LATEX-files easy. If you stick to
your editor, because it helps with editing LATEX-files, too, then just
make your contributions.

Many of these macros are not perfect in any way. First of all, I am
not a programmer. If I was, I would not have released this, because I
would not want to lose my job. Then, I have not written these macros
for others. Actually, I have written them for me. This implies that

13And NEdit is GPL, of course.

these macros are most suited to my needs, e.g., have a strong tendency
toward TEX’ing mathematics, whereas other things may be missing
in part or even completely. So, in order to get the most out of it, I
strongly recommend that you read not only in this manual from time
to time, but also start to read all the files in this distribution. There
are only plain text files that you can read and see, what they do.
For making this easier there is a documented source file with name
‘latex pack.nm’ included. Of course, you will need to learn about
NEdit’s macro language. But this is neither difficult nor an awkward
thing to do. Indeed, one of the reasons for choosing NEdit lies in
this well-chosen and straightforward programming language. Another
reason is NEdit’s advanced regular expression facility together with
a real, and nevertheless fast, syntax highlighting. If they say, NEdit
would be lightweight, as I hear sometimes, they must mean its size,
not its features – or they don’t know what they are talking about.

It is my conviction, that the LATEX-pack will serve as an example,
how to make editing easier. Similar sets of macros could be written,
or are already there but not contributed, for editing any kind of plain
text files, for example XML, HTML, C, Java, Perl, Tcl/Tk

6. Changes – what’s new

In version 0.5 there are several improvements. The ‘labels’-routine
has been simplified and ‘sectioning’ has been included. The Word-
/Code-completion macro has been corrected. The HelpSystem has
been updated to version 1.4 and more examples have been included.
There is also a corrected version of the LATEX-highlighting patterns for
NEdit. Moreover, the multi-file handling has been improved, see 4.12.
There are also some smaller things, e.g., hitting the underscore-key
two times in a row will insert sub- and super indices, hitting Alt+’
inserts German quotation marks (can be changed to US ones). Also,
this documentation was updated.

Notice that some key bindings have changed and that there are
changes in the expander macro, see 4.7.

In version 0.3 there are only minor changes to version 0.2. The
spell-checker handling macro is slightly corrected. The assistant sys-
tem can give now a first vague impression of what it should become.
Have a look at “Macro > Insert > Greek letters”. There is a technical
section in this manual to explain how this is done, see 4.16. Moreover,

there is an illustration of the use of the recursive expansion feature of
the expander macro, see 4.7.

In version 0.2 there are some more macros of general use included.
For example the word completion macro (that can be used for code
completions, too) and an alpha version of a macro that handles an
external spell-checker like Aspell or Ispell (which you must have in-
stalled on your system). Moreover, the smart indent macros (no good
word for what they are) have been changed almost completely. I have
changed the key-bindings, so that to every opening bracket there will
be the appropriate closing bracket inserted. If you don’t like it, you
can hold the alt-key down, or delete the key-bindings (in the X de-
faults file).

In addition, there is a macro included, that saves the current cursor
position in a file, when you close it, so that you can go on editing
at the same position next time. This is also done by changing key-
bindings, i.e., the macro is executed when hitting crtl-q or ctrl-w,
before the file is closed.

Finally I decided to include an alpha version of a kind of assistant
system (or it could become something like this), although it is far

from completed. The reason is that I don’t have much time (actually
not even enough time to update this manual), so I couldn’t bring it
to the state that I would like it to be, but it should be clear from the
provided macros, how this can be done.

Make sure to check out 4.7. This macro has been renamed and the
data files that it uses have been renamed, too. It is possible now, to
include several data files for abbrevations and corrections by simply
adding their names to the arrays at the start of the initialization, see
the “Expander > Init” macro.

Notice, that short-cut keys have been changed, too. They are listed
in the file ‘key bindings.txt’. Confirm also the X defaults settings for
NEdit. Finally this manual isn’t up-to-date, thus you may need to
read the macros themselves.

In version 0.1, the LATEX-pack runs with MiKTEX. For Windows
95, 98 and ME you should use the binaries from my home page. New
macros are for running LATEX, previewers, showing help files and in-
serting BibTEX entries. The automatic completion macros have been
improved and the ‘expansion with selection’-feature of the so-called
expander was added. There were also a few slight improvements of

other macros. In order to ease installation, all (proposed) acceler-
ator keys were shifted to ‘dot Xdefaults’, so you have to define key
bindings for yourself. I did this in order to avoid interferences with
accelerator keys that you may have already defined when importing
the NEdit-preference file.

7. Technical Notes about NEdit.

These sections cover technical remarks about key bindings in NEdit
and some recent developments going on.

7.1. Key Bindings

There are two different ways to define key bindings in NEdit. One is by
way of key translations in your X resource file, the other is by defining
accelerator keys in the macro, background and shell menus. Both
ways of defining key bindings are quite different. The key translations
cannot be changed on the fly, i.e., in order to change them you have to
edit your X resource file, to run xrdb and to restart NEdit. So, if in the
X resource file keys like space, return or the bracket keys are bound
to macros (as is done in the LATEX-pack) and these macros shouldn’t
be there, you have a problem. On the other hand, the definitions
of accelerator keys in the menus can be changed on the fly and they
overrule the key translations. Moreover, these accelerator bindings
are only active, when the respective menu is active. This means that
you can bind the same accelerator to a lot of macros, if these macros
are for different language modes. Thus the decision seems to be clear:

Forget about key translations and use the accelerator bindings.
However, why are these bindings called accelerator bindings? Can

they not be used to bind space, return or the bracket keys? The
answer is: Yes, they can, but you should not do so, because these
bindings are indeed only intended for accelerator keys. The problem
is that their definition is global to the window. You can see this, if
you bind for example the space key to a macro. Then invoke the
incremental search bar (Ctrl+i) and try to give in a blank. This
won’t work, because the macro bound to space will be executed.
So, binding normal keys to macros will make the incremental search
bar useless (if you bind return to a macro, you can’t even search
incrementally).

This is the reason to use both type of key bindings. For all the
bindings of normal keys such as space and the bracket keys to macros,
that are done by way of key translations, there is also a definition
included in the X resource file to get their original behavior. Simply
hold additionally the alt key down. Only for the space key you have
to hold a shift key down.

But, of course, you can and should change the key bindings to your
taste and needs! Notice that I even didn’t include accelerator keys for

most macros. So, if you don’t want to invoke the macros through the
menu each time, you have to define accelerator keys for them, which is
simply done in the macro and window background commands menus
(“Preferences > Default Settings > Customize Menus”).

7.2. Recent Developments

The latest stable release of NEdit is version 5.3. It is already worth-
while to update to this version, because the on-line help has become
much more readable. There also have been a couple of bug fixes, one
causing a crash when a syntax highlighting pattern contains charac-
ters with an ASCII code greater than 128.

More exciting is the current development going on. In the latest
sources there are the so-called ‘call-tips’ included. These are little
display boxes to show short help messages or compiler errors. There
is also a big efficiency improvement in the regular expressions al-
gorithm. In addition another parenthetical construct (look-behind)
was included. This makes it possible to further improve the LATEX-
patterns. Moreover, a new environment variable nedit home was
introduced to simplify the exchange of NEdit’s preference files (in

which the menu definitions, macros and syntax highlighting patterns
are contained).

Finally, there are two patches available for version 5.3, one allowing
optionally tabbed windows and the other allowing to color the back-
ground of ranges in the NEdit window. This can be used to mark
mathematical formulas or other special environments. It can also be
used to mark lines where TEX sees a problem.

	Title Page
	Description
	Notational Conventions
	Introduction
	Installation
	Unix/Linux
	Windows (Cygwin Port)
	Remark on X Defaults

	Overview
	Description of the Macros
	Snippets
	Theorems
	Equations
	Matrices
	Lists
	Format and Sections
	Expander Macros
	Remark

	Word-/Code Completion
	Labels, Commands and Sectioning
	Running TeX and Previewers
	Source Specials
	Main File and Bookmarks
	Comments
	Insert
	Dollars, Brackets and the like
	Help/Assistant
	Spell-Checker Handling

	General Remarks
	Changes -- what's new
	Technical Notes about NEdit.
	Key Bindings
	Recent Developments

