
mk – a LATEX maker

Wybo Dekker
wybo@servalys.nl

November 20, 2002

1 Introduction

 is a Perl script that, in close collaboration with 1 is helpful in the cyclic process
of editing, viewing, and printing a document. Having an existing2  docu-
ment, saymain.tex, you run on it by typing:

mk main

or, sincemain happens to be’s default filename:

mk

Now, if main.tex is a valid source, compiles it, including any table of con-
tents, indices, bibliography references, included files, and so on and takes over and
displays the resulting or  output. When you leave the viewer you will see
a prompt:

vpp command (h for help):

If you were satisfied with the displayed or  output, you can now decide to
print all or part of your document (see the section ‘Page selection’), or you can simply
quit by typing ‘q’. On the other hand, if you decide that you want to change the source
and have another try, you can edit the source by typing ‘e’ to get back to and (re)edit
your source. After saving your work and leaving your editor, another compilation and
display will be performed, based on the new source.

Essentially, uses the utility for the management of file dependencies,
2 for compilation, (or any other viewer you like) for viewing, and’s
 for printing in various formats.

Currently, is only available for, but adaptation for/ should
not be too complicated, as all software needed, including, is available on those
operating systems.

1 (short for View and Print PostScript/PDF) is the subject of another article in this issue.
2We shall later explain what happens if you try to edit a non-existing file (see the section ‘Locating the

source’).

1

2 How it works

When working on a document, the main activities –– apart from thinking –– consist
of editing the sources, compiling with (), viewing the result (either a
or  file or  errormessages) and, perhaps, printing the document or parts of it.

A  document, as well as any other TEX document, may need several passes
of compilation in order to fulfill all cross references and bibliography references, fix
longtable calculations, and build the indices. When you compile manually, you’ll have
to keep track of the often abundant messages of to see if another compilation
is needed. Most of that work can be taken out of your hands by using2 (or
2.) That is exactly what does.

However, although2 does look in the current directory for\included and
\inputed files, it does not keep track of other files that you may have edited, such
as style files, bibliography files, fontfiles, and so on, either in the current or in other
directories. For that purpose, a recent contribution to by Tong Sun and Chris
Beggy comes in handy: a makefile for that takes care of all of this, in cooperation
with 2. However, this makefile needs to be told on what files your sources
depend (apart from included files in the current directory.)

This problem is solved by the recent appearance of a new option for TEX: the
–recorder option. This option tells TEX to maintain a.fls file that logs all file depen-
dencies that TEX finds in the sources. This is how the start of the current document’s
.fls file, main.fls, looks like:

PWD /home/wybo/CVSWORK/mk

INPUT /tex/texmf/web2c/pdflatex.fmt

INPUT /tex/texmf/pdftex/config/pdftex.cfg

INPUT /home/wybo/CVSWORK/mk/main.tex

OUTPUT main.log

INPUT /texlive/texmf/tex/latex/base/article.cls

[110 similar lines follow...]

Now here is how works (supposingmain.tex to be the source):

1. if there is no filemain.fls or if it is older than the source, is run to generate
it.

2. main.fls is scanned for lines starting with INPUT and the files on those lines are
saved for.

3.  is executed.

4. if an error occurred, the log file is displayed, starting at the error location, skip-
ping irrelevant lines, and stopping at most 20 lines later. The error message and
its line number in the source are highlighted in color. The line number is remem-
bered for the editor to start at. The user is finally asked whether he wants to quit,
or to edit the source and recycle from 1. on.

5. if no error occurred, the or  output is displayed, using.

6. after the user has left the viewer (normally with ‘q’ or ‘control-q’) the user is
asked (still running) whether he wants to quit, or (re-)edit the source, or to
print (parts of) the document.

2

3 Page selection

As said in the introduction, after a successful compilation and display of the resulting
 or  output, the user is prompted with:

vpp command (h for help):

upon typing ‘h’ displays examples of possible commands:

Examples of print commands:

5 to print page 5

5- to print pages 5 through the end

5-7 to print pages 5, 6 and 7

-7 to print the first 7 pages

5-7,19- to print pages 5, 6, 7 and 19 through the end

a to print the whole document

a x3 to print 3 copies of the document

x3 the same

5 x3 to print 3 copies of page 5

t print the whole document twosided

t 2- print twosided starting at page 2

b to print the whole document as an a5 size booklet

b -12 to print the first 12 pages as an a5 size booklet

Other commands:

e edit the tex source and rerun mk

h display this help

? display this help

q quit

vpp command (h for help):

With these examples, no further explanation should be necessary, except that, when
twosided (‘t’) or booklet (‘b’) printing is selected, printing will be performed in two
shifts, one for the front side and one for the backside. Between the shifts, another
prompt appears:

printer ready? then turn stack and type return

You will have to arrange your printer such that, with the printed sides up, the first page
printed will be at the bottom of the stack, and the last page printed will be on top.
Normally you will then have your output come out the back of your printer. ‘Turn the
stack’ then means: rotate it over the long side of the paper and feed it back into the
printer for the other side to be printed.

For further information on, look in its manpage by typing

vpp -h

or read the article on elsewhere in this issue.

4 Locating the source

 locates the source in several steps:

3

Table 1: options

Options Short Defaults:

––batch=selection –b
––clean –c
––Clean –C

? ––print –pr true
? ––view –vi true
? ––ps –ps false
? ––quiet –q true

––rc=rcfile –r
––edit=file –e
––help –h
––version –ve

1. If you supply no arguments, the filemain.tex in the current directory is assumed.

2. If you supply an argument (saymyfile,)  adds a.tex extension if it isn’t there
and looks formyfile.tex in the current directory.

3. if myfile.tex is not found in the current directory, looks in the ‘alternate di-
rectory‘ (say/Documents) if you have defined one (see the section ‘RC-files’).

4. if the source was not found in/Documents, thinks that you may have a subdi-
rectorymyfile in /Documents where the source may live under the namemain.tex

5. if that file is not there, now concludes that the source does not yet exist and
reports this, telling at the saem time which files have been tried.

6. if you have defined a template file (see the section ‘RC-files’), now gives you
the opportunity to create a new source from that template. If you confirm
’s question, copies the template to the filename you supplied (ormain.tex
if you did not) and starts your editor with the newly created file.

7. finally, if all the above did not lead to a source file, dies.

5 Options

 comes with several options. Table 1 shows an overview. Options are shown in
logically identical pairs, with the full version in the first column and the minimum
shorthand (without the parameters) in the second. Options marked with a star are
boolean options. Default values are shown in the last column. You can set boolean
options to false by prefixing the option with ‘no’, for example:––noquietor –noq.

Before evaluating any options, will try to read a system rc-file, a user rc-file,
and, finally an rc-file in the current directory. The default values for?-marked options
and for string options can be set in these files. See the section ‘RC-files’ for more
information.

You can also set option defaults in an alias. For example:

4

alias mk=’mk --noquiet’

––help Prints help information and lets you type ‘m’ to display the complete man page
or anything else to quit.

––version Prints name and (-)version and then quits.

––quiet Suppresses messages about the progress is making. This is the default.

––rc rc-file Read specified rc-file before processing. The contents of the rc-file may
override options specified before the––rc option, therefore it is a good idea to
have the habit of specifying the––rc option first.

––batchprinting command string Prevents the––print option to interrogate the user
about pages to be printed. Instead the document is printed according to the
mandatoryprinting command string. Also sets viewing off. Thus the command

mk --batch ’2-3 x3’ test

prints 3 copies of pages 2 and 3 oftest.tex, without viewing.

––clean Clean up (remove) all unnecessary files generated by and except
for the or  files.

––Clean Clean up (remove) all unnecessary files generated by and in-
cluding the or  files.

––print Present the print prompt. This is the default. This option is normally used
to suppress the print prompt, for example when using from other scripts that
generate documents that have only to be displayed or stored without even
being displayed.

––ps Generate version of document. The default is to generate a docu-
ment.

––view Run the file viewer. This is the default. This option is normally used to sup-
press starting the viewer, for example when using from other scripts that
generate documents that have only to be printed.

––edit file Normally, lets you edit the main source file, but here you can specify
another file to be edited instead. This is useful, for example, if you are are fixing
a style file or another input file.

6 RC-files and customization

Unless the environment variable NORC has been set, three rc-files are executed, if they
exist, before reading the command line options, in the following order:

1. /etc/mkrc: the system rc-file

2. $HOME/.mkrc: the user rc-file

3. ./.mkrc: the local rc-file

5

You can use these rc-files to set the default values for the options, by setting the
Perl variable named after the long version of the options. For example:

$quiet=1; # run in quiet mode

So if you usually like to work quietly, you can indicate so in your rc-file and change
your mind in some cases by using the––noquiet(or perhaps–noq) option.

Other variables that can be set in the rc-files, and their default values, are:

$skip pattern = ’’; can be set to a file wildcard pattern. Files matching this pat-
tern on which the source file may depend will not be checked for changes.
For example, if you use a write-protected TEX-tree in the directorytexlive it
makes sense to set$skip_pattern=’/ˆ\/texlive/’;

$altdir = ’’; If $altdir is non-empty and a file to be compiled does not exist in
the current directory, it will be given another try after prefixing it with the con-
tents of$altdir. So if you like to have your file in /Documents/myfile.tex
you can set$altdir to /Documents and run from any directory with:

mk myfile

However, a directory like/Documents does not make much sense if many of your
 documents do not consist of a single file, but are constituted of an ensem-
ble of a main source and one or more\included and\inputed files such
as graphics. You will then probably prefer to have s subdirectory in/Documents
for every document.

Therefore, if does not findmyfile.tex in the alternate directory, it will assume
thatmyfile is a subdirectory with a main source in it, calledmain.tex.

$default = ’main’; This is the default for the basename of your document.

$template = ’’; Tells to give the opportunity to create a copy of this file when
a non-existent source is requested.

6

