
The soul package

Melchior FRANZ

January 3, 2002

Abstract

This article describes the soul package1, which provides h y p h e n -
a t e a b l e l e t t e r s p a c i n g (s p a c i n g o u t) , underlining and some
derivatives such as overstriking and highlighting. Although the package is
optimized for LATEX 2ε, it also works with Plain TEX and with other flavors
of TEX like, for instance, ConTEXt. By the way, the package name soul

is only a combination of the two macro names \so (space out) and \ul

(underline)—nothing poetic at all.

Contents

1 Typesetting rules 1

2 Short introduction and com-
mon rules 2
2.1 Some things work 3
2.2 . . . others don’t 4
2.3 Troubleshooting 6

3 L e t t e r s p a c i n g 6
3.1 How it works 6
3.2 Some examples 7
3.3 Typesetting caps-and-

small-caps fonts 8
3.4 Typesetting Fraktur . . . 9
3.5 Dirty tricks 9

4 Underlining 10
4.1 Settings 10
4.2 Some examples 11

5 Customization 12
5.1 Adding accents 12
5.2 Adding font commands . 12
5.3 Changing the internal font 13
5.4 The configuration file . . . 13

6 Miscellaneous 14
6.1 Using soul with other

flavors of TEX 14
6.2 Using soul commands in

logical markup 14
6.3 Typesetting long words

in narrow columns 14
6.4 Using soul commands in

section headings 15

7 How the package works 16
7.1 The kernel 16
7.2 The interface 17
7.3 A driver example 19

1 Typesetting rules

There are several possibilities to emphasize parts of a paragraph, where not all are
considered good style. While underlining is commonly rejected, experts dispute
about whether letterspacing should be used or not, and in which cases. If you are
not interested in such debates, you may well skip to the next section.

1This file has version number 2.0, last revised 2002/01/03.

1

Theory . . .

To understand the experts’ arguments we have to know about the conception of
page greyness. The sum of all characters on a page represents a certain amount
of greyness, provided that the letters are printed black onto white paper.

Jan Tschichold [9], a well known and recognized typographer, accepts
only forms of emphasizing, which do not disturb this greyness. This is only true of
italic shape, caps, and caps-and-small-caps fonts, but not of ordinary letterspacing,
underlining, bold face type and so on, all of which appear as either dark or light
spots in the text area. In his opinion emphasized text shall not catch the eye when
running over the text, but rather when actually reading the respective words.

Other, less restrictive typographers [10] call this kind of emphasizing ‘inte-
grated’ or ‘aesthetic’, while they describe ‘active’ emphasizing apart from it, which
actually has to catch the reader’s eye. To the latter group belong commonly
despised things like letterspacing, demibold face type and even underlined and
colored text.

On the other hand, Tschichold suggests to space out caps and caps-and-
small-caps fonts on title pages, headings and running headers from 1 pt up to 2 pt.
Even in running text legibility of uppercase letters should be improved with slight
letterspacing, since (the Roman) majuscules don’t look right, if they are spaced
like (the Carolingian) minuscules.2

. . . and Practice

However, in the last centuries letterspacing was excessively used, underlining at
least sometimes, because the old Fraktur fonts could not use capitals or italic
shape for emphasizing. This tradition is wideley continued until today. Fur-
thermore italic shape is not an option in many languages with non-latin glyphs.
Letterspacing has a strong tradition in eastern countries where cyrillic fonts are
used.

The Duden [3], a well known German dictionary, explains how to space out
properly: Punctuation marks are spaced out like letters, except quotation marks
and periods. Numbers are never spaced out. The German syllable -sche is not
spaced out in cases like “der V i r c h o w sche Versuch”3. In the old German
Fraktur fonts the ligatures ch, ck, sz (ß) and tz are not broken within spaced out
text.

While some books follow all these rules [5], others don’t [6]. (In fact, most
books in my personal library do not space out commas.)

2 Short introduction and common rules

The soul package provides five commands that are aimed at emphasizing text
parts. Each of the commands takes one argument that can either be the text
itself or the name of a macro that contains text (e. g. \so\text). See table 1 for
a complete command survey.

\so{letterspacing} l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} CAPITALS, Small Capitals

\ul{underlining} underlining
\st{overstriking} overstriking
\hl{highlighting} highlighting

2This suggestion is followed throughout this article, although Prof. Knuth already consid-
ered slight letterspacing with his cmcsc fonts.

3the Virchow experiment

2

The \hl command does only highlight if the color package was loaded, otherwise
it falls back to underlining. The highlighting color is by default yellow, underlines
and overstriking lines are by default black. The colors can be changed using the
following commands:

\setulcolor{red} set underlining color
\setstcolor{green} set overstriking color
\sethlcolor{blue} set highlighting color

\setulcolor{} and \setstcolor{} (note the empty braces) turn coloring off.
There are only few colors predefined by the color package, but you can easily
add custom color definitions. See the color package documentation [2] for further
information.

\usepackage{color,soul}
\definecolor{orange}{rgb}{1,.5,0}
\sethlcolor{orange}
...
\hl{this is highlighted in orange color}

2.1 Some things work . . .

The following examples may look boring and redundant, because they describe
nothing else than common LATEX notation with a few exceptions, but this is only
the half story: The soul package has to pre-process the argument before it can
split it into characters and syllables, and all described constructs are only allowed
because the package explicitly provides them.

§ 1 Quotes:
Example: \so{‘‘quotes’’}
The soul package recognizes the quotes ligatures ‘‘, ’’ and ,,.

§ 2 Accents:
Example: \so{na\"\i ve}
Accents can be used naturally. Support for the following accents is built-
in: \‘, \’, \^, \", \~, \=, \., \u, \v, \H, \t, \c, \d and \b. Additionally,
if the german package [7] is loaded you can also use the " accent commands
and write \so{na"ive}. See section 5.1 for how to add further accents.

§ 3 Mathematics:
Example: \so{foox^3bar}
Mathematic formulas are allowed, as long as they are surrounded by $.
Note that the LATEX equivalent \(...\) does not work.

§ 4 Hyphens and dashes:
Example: \so{re-sent}
Explicit hyphens as well as en-dashes (--), em-dashes (---) and the
\slash command work as usual.

§ 5 Newlines:
Example: \so{new\\line}
The \\ command fills the current line with white space and starts a new
line. Unlike the original LATEX command soul’s version does not handle
optional parameters like in \\[1ex].

§ 6 Breaking lines:
Example: \so{foo\linebreak bar}
The \linebreak command breaks the line without filling it with white

3

space at the end. soul’s version does not handle optional parameters like
in \linebreak[1]. \break can be used as a synonym.

§ 7 Unbreakable spaces:
Example: \so{don’t~break}
The ~ command sets an unbreakable space.

§ 8 Grouping:
Example: \so{Virchow{sche}}
A pair of braces can be used to let a group of characters be seen as one
item, so that soul does for instance not space it out. The contents must,
however, not contain potential hyphenation points. (See § 9)

§ 9 Protecting:
Example: \so{foo \mbox{little} bar}
An \mbox does also keep soul from breaking up the contents, but they
may even contain breakable material. \hbox can be used as a synonym.

§ 10 Font switching commands:
Example: \so{foo \texttt{bar}}
All standard TEX and LATEX font switching commands are allowed, as
well as the yfonts package [8] font commands like \textfrak etc. Fur-
ther commands have to be registered using the \soulfont command (see
section 5.2).

§ 11 Breaking up ligatures:
Example: \ul{Auf{}lage}
Use {} or \null to break up ligatures like ‘fl’ in \ul, \st and \hl ar-
guments. This won’t work conveniently for \so and \caps, because they
break up every unprotected (ungrouped/unboxed) ligature, anyway, and
would then just add undesirable extra space around the additional item.

2.2 . . . others don’t

Although the new soul is much more robust and forgiving than versions prior
to 2.0, there are still some things that are not allowed in arguments. This is due
to the complex engine, which has to read and inspect every character before it can
hand it over to TEX’s paragraph builder.

§ 20 Grouping hyphenateable material:
Example: \so{foo {little} bar}
Grouped characters must not contain hyphenation points. Instead of
\so{foo {little}} write \so{foo \mbox{little}}. You get a ‘Re-
construction failed’ error and a black square like in the DVI file
where you violated this rule.

§ 21 Discretionary hyphens:
Example: \so{Zu\discerctionary{k-}{}{c}ker}
The argument must not contain discretionary hyphens. Thus you have to
handle cases like the German word Zu\discretionary{k-}{}{c}ker by
yourself.

§ 22 Material without ectt10 representation:
Example: \so{foo \TeX\ bar}
Every token that can’t be typeset with just one character of the cmtt10
font leads to a reconstruction error. This can be avoided by enclosing
the token in braces, e. g. \so{foo {\TeX} bar}, or registering it as font,
e. g. \soulfont{\TeX}{0} \so{foo \TeX\ bar}. It doesn’t matter if it

4

page

\so{letterspacing} 6 l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} 8 CAPITALS, Small Capitals

\ul{underlining} 10 underlining
\st{striking out} 10 striking out
\hl{highlighting} 10 highlighting

\soulaccent{\cs} 12 add accent \cs to accent list
\soulfont{\cs}{0} 12 add font switching command \cs
\sloppyword{text} 14 typeset text with stretchable spaces

\sodef\cs{1em}{2em}{3em} 7 define new spacing command \cs
\resetso 7 reset \so dimensions

\capsdef{////}{1em}{2em}{3em}∗ 8 define (default) \caps data entry
\capssave\cs∗ 9 save \caps database under name \cs
\capsreset∗ 8 clear caps database

\setul{1ex}{2ex} 10 set \ul dimensions
\resetul 10 reset \ul dimensions

\setuldepth{y} 10 set underline depth to depth of y
\setuloverlap{y} 11 set underline overlap width to y

\setulcolor{y}∗ 10 set underline color to y
\setstcolor{y}∗ 11 set overstriking color to y
\sethlcolor{y}∗ 11 set highlighting color to y

Table 1: List of all available commands. The number points to the page where
the command is described. Those marked with a little asterisk are only available
when the package is used together with LATEX, because they rely on the color
package or on the New Font Selection Scheme (NFSS) used in LATEX.

isn’t really a font at all. \TeX is actually a bad example, because it is
already pre-registered as font switching command.

§ 23 Nested soul commands:
Example: \ul{foo \so{bar} baz}
soul commands must not be nested. If you really need such, put the inner
stuff in a box and use this box.

\newbox\anyboxname
\sbox\anyboxname{ \so{the worst} }
\ul{This is by far\mbox{\usebox\anyboxname}example!}

yields:
This is by far t h e w o r s t example!

§ 24 Conditional statements:
Example: \so{foo \iffalse bar\fi baz}
soul arguments must not contain conditional statements like \if, \else,
\fi, \ifcase, etc.

§ 25 Other weird stuff:
Example: \so{foo \verb|\bar| baz}
They also must not contain LATEX environments, command definitions,
and fancy stuff like \vadjust. As long as you are writing simple, ordinary
‘horizontal’ material, you are on the safe side.

5

2.3 Troubleshooting

Unfortunately, there’s just one helpful error message provided by the soul pack-
age, that actually describes the underlying problem. All other messages are gen-
erated directly by TEX and show the low-level commands that TEX wasn’t happy
with. They’ll hardly point you to the violated rule as described in the above
paragraphs. If you get such a mysterious error message for a line that contains
a soul statement, then comment that statement out and see if the message still
appears. ‘Incomplete \ifcat’ is such a non-obvious message. If the message
doesn’t appear now, then check the argument for violations of the rules as listed
in §§ 20–26.

2.3.1 ‘Reconstruction failed’

This message appears, if § 20 or § 22 were violated. It is caused by the fact that the
reconstruction pass couldn’t collect tokens with an overall width of the syllable
that was measured by the analyzer. This does either occur when you grouped
hyphenateable text or used an unregistered command that influences the sylla-
ble width. Font switching commands belong to the latter group. See the cited
paragraphs for how to fix these problems.

2.3.2 Missing characters

If you have redefined the internal font as described in section 5.3, you may notice
that some characters are omitted without any error message being shown. This
happens if you have chosen, let’s say, a font with only 128 characters like the
cmtt10 font, but are using characters that aren’t represented in this font, e.g.
characters with codes greater than 127.

3 L e t t e r s p a c i n g

3.1 How it works

The base macro for letterspacing is called \so. It typesets the given argument\so

with inter-letter space between every two characters, inner space between words
and outer space before and after the spaced out text. If we let “·” stand for inter-
letter space, “∗” for inner spaces and “•” for outer spaces, then the input on the
left side of the follwing table will yield the schematic output on the right side:

1. XX\so{aaa bbb ccc}YY XXa·a·a∗b·b·b∗c·c·cYY
2. XX \so{aaa bbb ccc} YY XX•a·a·a∗b·b·b∗c·c·c•YY
3. XX {\so{aaa bbb ccc}} YY XX•a·a·a∗b·b·b∗c·c·c•YY
4. XX \null{\so{aaa bbb ccc}}{} YY XX a·a·a∗b·b·b∗c·c·c YY

Case 1 shows how letterspacing macros (\so and \caps) behave if they aren’t fol-
lowing or followed by a space: they omit outer space around the soul statement.
Case 2 is what you’ll mostly need—letterspaced text amidst running text. Follow-
ing and leading space get replaced by outer space. It doesn’t matter if there are
opening braces before or closing braces afterwards. soul can see though both of
them (case 3). Note that leading space has to be at least 5sp wide to be accepted
as space, because LATEX uses tiny spaces with \hskip1sp internally as marker.
Case 4 shows how to enforce normal spaces instead of outer spaces: Preceding
space can be hidden by any token or \kern0pt. Following space can also be hid-
den by any token, but note that a typical macro name like \relax or \null would
also hide the space after.

6

The values are predefined for typesetting facsimiles mainly with Fraktur fonts.
You can define your own spacing macros or overwrite the original \so meaning
using the macro \sodef:\sodef

\sodef〈cmd〉{〈font〉}{〈inter-letter space〉}{〈inner space〉}{〈outer space〉}

The space dimensions, all of which are mandatory, should be defined in terms of
em letting them grow and shrink with the respective fonts.

\sodef\an{}{.4em}{1em plus1em}{2em plus.1em minus.1em}

After that you can type ‘\an{example}’ to get ‘e x a m p l e’. The \resetso\resetso

command resets \so to the default values.

3.2 Some examples

Ordinary text. \so{electrical industry}

e l e c t r i c a l i n d u s t r y
e l e c -
t r i -
c a l
i n -
d u s -
t r y

Use \- to mark hyphenation
points.

\so{man\-u\-script}

m a n u s c r i p t
m a n -
u -
s c r i p t

Accents are recognized. \so{le th\’e\^atre}

l e t h é â t r e
l e
t h é â t r e

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\so{just an \mbox{example}}

j u s t a n example
j u s t
a n
example

Punctuation marks are spaced
out, if they are put into the
group.

\so{inside.} \& \so{outside}.

i n s i d e . & o u t s i d e.
i n -
s i d e .
&
o u t -
s i d e.

Spaceout skips may be
removed by typing \<. It’s,
however, desirable to put the
quotation marks out of the
argument.

\so{‘‘\<Pennsylvania\<’’}

“P e n n s y l v a n i a”
“P e n n -
s y l -
v a -
n i a”

Numbers should never be
spaced out.

\so{1\<3 December {1995}}

13 D e c e m b e r 1995
13
D e -
c e m -
b e r
1995

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the line
afterwards.

\so{input\slash output}

i n p u t / o u t p u t
i n -
p u t /
o u t -
p u t

7

To keep TEX from breaking
lines between the hyphen and
‘jet’ you have to protect the
hyphen. This is no soul

restriction but normal TEX
behaviour.

\so{\dots and \mbox{-}jet}

. . . a n d - j e t
. . . a n d
- j e t

The ~ command inhibits line
breaks.

\so{unbreakable~space}

u n b r e a k a b l e s p a c e
u n -
b r e a k -
a b l e s p a c e

\\ works as usual. Additional
arguments like * or vertical
space are not accepted,
though.

\so{broken\\line}

b r o k e n
l i n e

b r o -
k e n
l i n e

\break breaks the line without
filling it with white space.

\so{pretty awful\break test}

p r e t t y a w f u l
t e s t

p r e t t y
a w -
f u l
t e s t

3.3 Typesetting capitals-and-small-capitals fonts

There is a special letterspacing command called \caps, which differs from \so\caps

in that it switches to caps-and-small-caps font shape, defines only slight spacing
and is able to select spacing value sets from a database. This is a requirement
for high-quality typesetting [9]. The following lines show the effect of \caps in
comparison with the normal textfont and with small-capitals shape:

\normalfont DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT
\scshape DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

\caps DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

The \caps font database is by default empty, i. e.: it contains just a single default
entry, which yields the result as shown in the above example. New font entries
may be added on top of this list using the \capsdef command, which takes five\capsdef

arguments: The first argument describes the font with encoding, family, series,
shape, and size, each optionally (e. g. OT1/cmr/m/n/10 for this very font, or only
/ppl///12 for all palatino fonts at size 12 pt). The size entry may also contain a
size range (5-10), where zero is assumed for an omitted lower boundary (-10) and
a very, very big number for an omitted upper boundary (5-). The upper boundary
is not included in the range, so, in the example below, all fonts with sizes greater or
equal 5 pt and smaller than 15 pt are accepted (5 pt ≤ size < 15 pt). The second
argument may contain font switching commands such as \scshape, it may as well
be empty or contain debugging commands (e. g. \message{*}). The remaining
three, mandatory arguments are the spaces as described in section 3.1.

\capsdef{T1/ppl/m/n/5-15}{\scshape}{.16em}{.4em}{.2em}

The \caps command goes through the data list from top to bottom and picks up
the first matching set, so the order of definition is essential. The last added entry
is examined first, while the pre-defined default entry will be examined last and
match any font, if no entry was taken before.

To override the default values, just define a new default entry using the iden-
tifier {////}. This entry should be defined first, because no entry after it can be
reached.

The \caps database can be cleared with the \capsreset command. It will\capsreset

8

only contain the default entry thereafter. The \capssave command saves the\capssave

whole current database and assigns it to a macro name. This allows to predefine
different groups of \caps sets:

\capsreset
\capsdef{/cmss///12}{}{12pt}{23pt}{34pt}
\capsdef{/cmss///}{}{10pt}{20pt}{30pt}
...
\capssave\widecaps

\capsreset
\capsdef{/cmss///}{}{.1pt}{.2pt}{.3pt}
...
\capssave\narrowcaps

{\widecaps
\title{\caps{Yet Another Silly Example}}
}

See the ‘example.cfg’ file for a fairly complete example. If you have defined a
bunch of sets for different fonts and sizes, you may lose control over what fonts
are used by the package. With the package option capsdefault selected, \capscapsdefault
prints its argument underlined, if no set was specified for a particular font and the
default set had to be used.

3.4 Typesetting Fraktur

The old German fonts4 deserve some additional considerations. As stated in sec-
tion 1, the ligatures ch, ck, sz (\ss), and tz have to remain unbroken in spaced
out Fraktur text. This may look strange at first glance, but you’ll get used to it:

\textfrak{\so{S{ch}u{tz}vorri{ch}tung}}

You already know that grouping keeps the soul mechanism from separating such
ligatures. This is quite important for s:, a*, and "a. As hyphenation is stronger
than grouping, especially the sz may cause an error, if hyphenation happens to
occur between the letters s and z. (TEX hyphenates the German word auszer
wrongly like aus-zer instead of like au-szer, because the German hyphenation
patterns do, for good reason, not see sz as ‘\ss’.) In such cases you can protect
tokens with the sequence e. g. \mbox{sz} or a properly defined command. The
\ss command, which is defined by the yfonts package, and similar commands
will suffice as well.

3.5 Dirty tricks

Narrow columns are hard to set, because they don’t allow much spacing flex-
ibility, hence long words often cause overfull boxes. A macro—let us call it
\magstylepar—could use \so to insert stretchability between the single charac-
ters. The following columns show some text typeset with such a funny definition
at the left side and under plain conditions at the right side, both with a width
of 6 pc.

4See the great old German fonts, which Yannis Haralambous kindly provided, and the
oldgerm and yfonts package as their LATEX interfaces.

9

Some magazines
and newspapers
prefer this kind
of spac ing b e-
cause it reduces
h y p h e n a t i o n
prob l ems to a
minimum. Un-
f o r t u n a t e l y,
such paragraphs
aren’t especially
beautiful.

Some magazines
and newspapers pre-
fer this kind of spac-
ing because it re-
duces hyphenation
problems to a min-
imum. Unfortu-
nately, such para-
graphs aren’t es-
pecially beautiful.

4 Underlining

The underlining macros are my answer to Prof. Knuth’s exercise 18.26 from his
TEXbook [4]. :-) All said about the macro \ul is also true of the striking out\ul

macro \st and the highlighting macro \hl, both of which are in fact derived from\st

\hl the former.

4.1 Settings

4.1.1 Underline depth and thickness

The predefined underline depth and thickness work well with most fonts. They
can be changed using the macro \setul.\setul

\setul{〈underline depth〉}{〈underline thickness〉}
Either dimension can be omitted, in which case there has to be an empty pair
of braces. Both values should be defined in terms of ex, letting them grow and
shrink with the respective fonts. The \resetul command restores the standard\resetul

values.
Another way to set the underline depth is to use the macro \setuldepth.\setuldepth

It sets the depth such that the underline’s upper edge lies 1 pt beneath the given
argument’s deepest depth. If the argument is empty, all letters—i. e. all characters
whose \catcode currently equals 11—are taken. Examples:

\setuldepth{ygp}
\setuldepth\strut
\setuldepth{}

4.1.2 Line color

The underlines are by default black. The color can be changed by using the
\setulcolor command. It takes one argument that can be any of the color spec-\setulcolor

ifiers as described in the color package. This package has to be loaded explicitly.

\documentclass{article}
\usepackage{color,soul}
\definecolor{darkblue}{rgb}{0,0,0.5}
\setulcolor{darkblue}

\begin{document}
...
\ul{Cave: remove all the underlines!}
...
\end{document}

10

The colors for overstriking lines and highlighting are likewise set with \setstcolor\setstcolor

(default: black) and \sethlcolor (default: yellow). If the color package wasn’t\sethlcolor

loaded underlining and overstriking color are black, while highlighting is replaced
by underlining.

4.1.3 The dvips problem

Underlining, striking out and highlighting build up their lines with many short
line segments. If you used the ‘dvips’ program with default settings, you would
get little gaps on some places, because the maxdrift value allows the single objects
to drift this many pixels from their real positions.

There are two ways to avoid the problem, where the soul package chooses the
second by default:

1. Set the maxdrift value to zero, e. g.: dvips -e 0 file.dvi. This is proba-
bly not a good idea, since the letters may then no longer be spaced equally
on low resolution printers.

2. Let the lines stick out by a certain amount on each side so that they overlap.
This overlap amount can be set using the \setuloverlap. It is set to 0.25 pt\setuloverlap

by default. \setuloverlap{0pt} turns overlapping off.

4.2 Some examples

Ordinary text. \ul{electrical industry}

electrical industry
elec-
tri-
cal
in-
dus-
try

Use \- to mark hyphenation
points.

\ul{man\-u\-script}

manuscript
man-
u-
script

Accents are recognized. \ul{le th\’e\^atre}

le théâtre
le
théâtre

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\ul{just an \mbox{example}}

just an example
just
an
example

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the line
afterwards.

\ul{input\slash output}

input/output
in-
put/
out-
put

To keep TEX from breaking
lines between the hyphen and
‘jet’ you have to protect the
hyphen. This is no soul

restriction but normal TEX
behaviour.

\ul{\dots and \mbox{-}jet}

. . . and -jet
. . . and
-jet

11

The ~ command inhibits line
breaks.

\ul{unbreakable~space}

unbreakable space
un-
break-
able space

\\ works as usual. Additional
arguments like * or vertical
space are not accepted,
though.

\ul{broken\\line}

broken
line

bro-
ken
line

\break breaks the line without
filling it with white space.

\ul{pretty awful\break test}

pretty awful
test

pretty
aw-
ful
test

5 Customization

5.1 Adding accents

The soul scanner generally sees every input token separately. It has to be taught
that some tokens belong together. For accents this is done by registering them via
the \soulaccent macro.\soulaccent

\soulaccent{〈accent command〉}

The standard accents, however, are already pre-registered: \‘, \’, \^, \", \~, \=,
\., \u, \v, \H, \t, \c, \d and \b. If used together with the german package,
soul automatically adds the " command. Let’s assume you have defined \% to
put some weird accent on the next character. Simply put the following line into
your soul.cfg file (see section 5.4):

\soulaccent{\%}

5.2 Adding font commands

To convince soul not to feed font switching commands to the analyzer, but rather
to execute them immediately, they have to be registered, too. The \soulfont\soulfont

macro takes the name of the font switching command and either 0 or 1 for the
number of arguments:

\soulfont{〈font command〉}{〈number of arguments〉}

If \bf and \emph weren’t already registered, you would write the following into
your soul.cfg configuration file:

\soulfont{\bf}{0} % {\bf foo}
\soulfont{\emph}{1} % \emph{bar}

The standard commands of TEX and LATEX as well as the yfonts commands are
already pre-registered:

\em, \rm, \bf, \it, \tt, \sc, \sl, \sf, \emph, \textrm,
\textsf, \texttt, \textmd, \textbf, \textup, \textsl,
\textit, \textsc, \textnormal, \rmfamily, \sffamily,
\ttfamily, \mdseries, \upshape, \slshape, \itshape,
\scshape, \normalfont, \tiny, \scriptsize, \footnotesize,
\small, \normalsize, \large, \Large, \LARGE, \huge, \Huge,
\textfrak, \textswab, \textgoth, \frakfamily,
\swabfamily, \gothfamily

12

Some other macros are also registered as fonts, so the analyzer won’t see them.
This is necessary because they have no representation in the cmtt10 font and
would hence cause a reconstruction error. See § 22.

\S, \textregistered, \copyright, \TeX, \LaTeX

5.3 Changing the internal font

The soul package uses the ectt10 font to analyze the syllables. This font is used,
because it has 256 mono-spaced characters without any kerning. It belongs to
Jörg Knappen’s EC-fonts, which should be part of every modern TEX instal-
lation. If TEX reports “I can’t find file ‘ectt10’” you don’t seem to have
this font installed. It is recommended that you install at least the file ectt10.tfm
which has less than 1.4 kB. Alternatively, you can let the soul package use the
cmtt10 font that is part of any installation, or some other mono-spaced font:

\font\SOUL@tt=cmtt10

Note, however, that soul does only handle characters, for which the internal font
has a character with the same character code. As cmtt10 contains only characters
with codes 0 to 127, you can’t typeset characters with codes 128 to 255. These
8-bit character codes are used by many fonts with non-ascii glyphs. So the cmtt10
font will, for example, not work for T2A encoded cyrillic characters.

5.4 The configuration file

If you want to change the predefined settings or add new features, then create
a file named ‘soul.cfg’ and put it in a directory, where TEX can find it. This
configuration file will then be loaded at the end of the soul.sty file, so you
may redefine any settings or commands therein, select package options and even
introduce new ones. But if you intend to give your documents to others, don’t
forget to give them the required configuration files, too! That’s how such a file
could look like:

% define macros for logical markup
\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}
\DeclareRobustCommand*\versal[1]{%

\MakeUppercase{\SOUL@@@versal{#1}}%
\SOUL@socheck

}

% load the color package and set
% a different highlighting color
\RequirePackage{color}
\definecolor{lightblue}{rgb}{.90,.95,1}
\sethlcolor{lightblue}
\endinput

You can safely use the \SOUL@@@ namespace for internal macros—it won’t be used
by the soul package in the future.

13

6 Miscellaneous

6.1 Using soul with other flavors of TEX

This documentation describes how to use soul together with LATEX 2ε, for which
it is optimized. It works, however, with all other flavors of TEX, too. There are
just some minor restrictions for Non-LATEX use:

The \caps command doesn’t use a database, it is only a dumb definition with
fixed values. It switches to \capsfont, which—unless defined explicitly like in
the following example—won’t really change the used font at all. The commands
\capsreset and \capssave do nothing.

\font\capsfont=cmcsc10
\caps{Tschichold}

None of the commands are made ‘robust’, so they have to be explicitly protected
in fragile environments like in \write statements.

6.2 Using soul commands in logical markup

It’s generally a bad idea to use font style commands like \textsc in running text.
There should always be some reasoning behind changing the style, such as “names
of persons shall be typeset in a caps-an-small-caps font”. Then you declare in
your text just that some words are the name of a person, while you define in the
preamble or, even better, in a separate style file how to deal with persons:

\newcommand*\person{\textsc}
...
‘‘I think it’s a beautiful day to go to the zoo and feed
the ducks. To the lions.’’ --~\person{Brian Kantor}

It’s quite simple to use soul commands that way:

\newcommand\comment*{\ul} % or \let\comment=\ul
\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

Letterspacing commands like \so and \caps have to check whether they are fol-
lowed by white space, in which case they replace that space by outer space. Note
that soul does look through closing braces. Hence you can conveniently bury a
soul command within another macro like in the following example. Use any other
token to hide following space if necessary, e. g. the \null macro.

\DeclareRobustCommand*\versal[1]{%
\MakeUppercase{\SOUL@@@versal{#1}}%

}
\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}

6.3 Typesetting long words in narrow columns

Narrow columns are best set flushleft, because not even the best hyphenation
algorithm can guarantee acceptable line breaks without overly stretched spaces.
However, in some rare cases one may be forced to typeset block aligned. When
typesetting in languages like German, where there are really long words, the
\sloppyword macro might help a little bit. It adds enough stretchability between\sloppyword

the single characters to make the hyphenation algorithm happy, but is still not as
ugly as the example in section 3.5 demonstrates. In the following example the left
column was typeset as “Die \sloppyword{Donau...novelle} wird ...”:

14

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensions-
gesetznovelle wird mit
sofortiger Wirkung außer
Kraft gesetzt.

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensions-
gesetznovelle wird mit
sofortiger Wirkung außer
Kraft gesetzt.

6.4 Using soul commands in section headings

Letterspacing was often used for section titles in the past, mostly centered and
with a closing period. The following example shows how to achieve this using the
titlesec package [1]:

\newcommand*\periodafter[2]{#1{#2.}}
\titleformat{\section}[block]

{\normalfont\centering}
{\thesection.}
{.66em}
{\periodafter\so}

...
\section{VON DEN MAASSEN UND MAASSST\"ABEN}

This yields the following output:

1 . V O N D E N M A A S S E N U N D M A A S S S T Ä B E N .

The \periodafter macro adds a period to the title, but not to the entry in
the table of contents. It takes the name of a command as argument, that shall
be applied to the title, like e. g. \so. Here’s a more complicated and complete
example:

\documentclass{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{german,soul}
\usepackage[indentfirst]{titlesec}

\newcommand*\sectitle[1]{%
\MakeUppercase{\so{#1}.}\\[.66ex]
\rule{13mm}{.4pt}}

\newcommand*\periodafter[2]{#1{#2.}}

\titleformat{\section}[display]
{\normalfont\centering}
{\S. \thesection.}
{2ex}
{\sectitle}

\titleformat{\subsection}[block]
{\normalfont\centering\bfseries}
{\thesection.}
{.66em}
{\periodafter\relax}

15

\begin{document}
\section{VON DEN MAASSEN UND MAASSST\"ABEN}
\subsection{Das L\"angenmaass im Allgemeinen}

Um L\"angen genau messen und vergleichen zu k\"onnen,
bedarf es einer gewissen, bestimmten Einheit, mit der
man untersucht, wie oft sie selbst, oder ihre Theile,
in der zu bestimmenden L\"ange enthalten sind.
...
\end{document}

This example gives you roughly the following output, which is a faksimile from [5].

§. 1.

V O N D E N M A A S S E N U N D M A A S S S T Ä B E N.

1. Das Längenmaass im Allgemeinen.

Um Längen genau messen und vergleichen zu können, bedarf es einer gewis-
sen, bestimmten Einheit, mit der man untersucht, wie oft sie selbst, oder ihre
Theile, in der zu bestimmenden Länge enthalten sind.

7 How the package works

7.1 The kernel

L e t t e r s p a c i n g , underlining, striking out and highlighting use the same
kernel mechanism. It lets a word scanner run over the given argument, which
inpects every token. If a token is a command registered via \soulfont, it is
executed immediately. Other tokens are only counted and trigger some action
when a certain amount is reached (quotes and dashes). Three subsequent ‘-’,
for example, trigger \SOUL@everyexhyphen{---}. A third group leads to special
actions, like \mbox that starts reading-in a whole group to protect its contents and
let them be seen as one entity. All other tokens, mostly characters and digits, are
collected in a word register and whenever a whole word is read-in, it is passed to
the analyzer.

The analyzer typesets the word in a 1 sp (= 1
65536 pt) wide \vbox, hence en-

couraging TEX to break lines at every possible hyphenation point. It uses the
mono-spaced \SOUL@tt font (ectt10), so as to avoid any inter-character kerning.
Now the \vbox is decomposed splitting off \hbox after \hbox from the bottom.
All boxes, each of which contains one syllable, are pushed onto a stack, which is
provided by TEX’s grouping mechanism. When returning from the recursion, box
after box is fetched from the stack, its width measured and fed to the “reconstruc-
tor”.

This reconstruction macro (\SOUL@dosyllable) starts to read tokens from the
just analyzed word until the given syllable width is obtained. This is repeated for
each syllable. Every time the engine reaches a relevant state, the corresponding
driver macro is executed and, if necessary, provided with some data. There is a
macro that is executed for each token, one for each syllable, one for each space
etc.

16

The engine itself doesn’t know how to letterspace or to underline. It just tells
the selected driver about the structure of the given argument. There’s a default
driver (\SOUL@setup) that does only set the interface macros to a reasonable
default state, but doesn’t really do anything. Further drivers can safely inherit
these settings and only need to redefine what they want to change.

7.2 The interface

7.2.1 The registers

The package offers eight interface macros that can be used to define the required
actions. Some of the macros receive data as macro parameter or in special token
or dimen registers. Here is a list of all available registers:

\SOUL@token This token register contains the current token.
It has to be used as \the\SOUL@token. The
macro \SOUL@gettoken reads the next token into
\SOUL@token and can be used in any interface
macro. If you don’t want to lose the old mean-
ing, you have to save it explicitly. \SOUL@puttoken
pushes the token back into the queue, without
changing \SOUL@token. You can only put one token
back, otherwise you get an error message.

\SOUL@lasttoken This token register contains the last token.

\SOUL@syllable This token register contains all tokens that were al-
ready collected for the current syllable. When used
in \SOUL@everysyllable, it contains the whole syl-
lable.

\SOUL@charkern This dimen register contains the kerning value be-
tween the current and the next character. Since
most character pairs don’t require a kerning value
to be applied and the output in the logfile shouldn’t
be cluttered with \kern0pt it is recommended to
write \SOUL@setkern\SOUL@charkern, which sets
kerning for non-zero values only.

\SOUL@hyphkern This dimen register contains the kerning value be-
tween the current character and the hyphen char-
acter or, when used in \SOUL@everyexhyphen, the
kerning between the last character and the explicit
hyphen.

7.2.2 The interface macros

The following list describes each of the interface macros and which registers they
can rely on. The mark between label and description will be used in section 7.2.3
to show when the macros are executed. The addition #1 means that the macro
takes one argument.

\SOUL@preamble P executed once at the beginning

\SOUL@postamble E executed once at the end

17

\SOUL@everytoken T executed after scanning a token; It gets that to-
ken in \SOUL@token and has to care for insert-
ing the kerning value between this and the next
character (\SOUL@charkern). To look at the next
character, execute \SOUL@gettoken, which replaces
\SOUL@token by the next token. This token has to
be put back into the queue using \SOUL@puttoken.

\SOUL@everysyllable S This macro is executed after scanning a whole syl-
lable. It gets the syllable in \SOUL@syllable.

\SOUL@everyhyphen − This macro is executed at every implicit hyphen-
ation point. It is responsible for setting the hy-
phen and will likely do this in a \discretionary
statement. It has to care about the kerning values.
The registers \SOUL@lasttoken, \SOUL@syllable,
\SOUL@charkern and \SOUL@hyphkern contain use-
ful information. Note that \discretionary inserts
\exhyphenpenalty if the first part of the discre-
tionary is empty, and \hyphenpenalty else.

\SOUL@everyexhyphen#1 = This macro is executed at every explicit hyphen-
ation point. The hyphen ‘character’ (one of hy-
phen, en-dash, em-dash or \slash) is passed as
parameter #1. A minimal implementation would
be {#1\penalty\exhyphenpenalty}. The kerning
value between the last character and the hyphen is
passed in \SOUL@hyphkern, that between the hy-
phen and the next character in \SOUL@charkern.
The last syllable can be found in \SOUL@syllable,
the last character in \SOUL@lasttoken.

\SOUL@everyspace#1 This macro is executed between every two words.
It is responsible for setting the space. The en-
gine submits a \penalty setting as parameter #1
that should be put in front of the space. The
macro should at least do {#1\space}. Further in-
formation can be found in \SOUL@lasttoken and
\SOUL@syllable. Note that the leading and trail-
ing space of the \so driver implementation is not
covered by \SOUL@everyspace, but provided by
\SOUL@preamble and \SOUL@postamble.

7.2.3 Some examples

The above list’s middle column shows a mark that indicates in the following ex-
amples, when the respective macros are executed:

P

w
T

o
T

r
T

d
T SE

\SOUL@everytokenT is executed for every token.
\SOUL@everysyllableS is additionally executed
for every syllable. You will mostly just want to
use either of them.

P

o
T

n
T

e
T S

 t
T

w
T

o
T SE

The macro \SOUL@everyspace is executed at every
space within the soul argument. It has to take one
argument, that can either be empty or contain a
penalty, that should be applied to the space.

18

P

e
T

x
T S−

a
T

m
T S−

p
T

l
T

e
T SE

The macro \SOUL@everyhyphen is executed at ev-
ery possible imcplicit hyphenation point.

P

b
T

e
T

t
T

a
T S

-
=

t
T

e
T

s
T

t
T SE

Explicit hyphens trigger \SOUL@everyexhyphen.

It’s only natural that these examples, too, were automatically typeset by the soul
package using a special driver:

\DeclareRobustCommand*\an{%
\def\SOUL@preamble{$^{^P}$}%
\def\SOUL@everyspace##1{##1\texttt{\char‘\ }}%
\def\SOUL@postamble{$^{^E}$}%
\def\SOUL@everyhyphen{$^{^-}$}%
\def\SOUL@everyexhyphen##1{##1$^{^=}$}%
\def\SOUL@everysyllable{$^{^S}$}%
\def\SOUL@everytoken{\the\SOUL@token$^{^T}$}%
\def\SOUL@everylowerthan{$^{^L}$}%
\SOUL@}

7.3 A driver example

Let’s define a soul driver that allows to typeset text with a hyphen at every
potential hyphenation point. The name of the macro shall be \sy (for sylla-
bles). Since the soul mechanism is highly fragile, we use the LATEX command
\DeclareRobustCommand, so that the \sy macro can be used even in section head-
ings etc. The \SOUL@setup macro sets all interface macros to reasonable default
definitions. This could of course be done manually, too. As we won’t make use of
\SOUL@everytoken and \SOUL@postamble and both default to \relax, anyway,
we don’t have to define them here.

\DeclareRobustCommand*\sy{%
\SOUL@setup

We only set \lefthyphenmin and \righthyphenmin to zero at the beginning. All
changes are restored automatically, so there’s nothing to do at the end.

\def\SOUL@preamble{\lefthyphenmin=0 \righthyphenmin=0 }%

We only want simple spaces. Note that these are not provided by default!
\SOUL@everyspace may get a penalty to be applied to that space, so we set it
before.

\def\SOUL@everyspace##1{##1\space}%

There’s nothing to do for \SOUL@everytoken, we rather let \SOUL@everysyllable
handle a whole syllable at once. This has the advantage, that we don’t have to
deal with kerning values, because TEX takes care of that.

\def\SOUL@everysyllable{\the\SOUL@syllable}

The TEX primitive \discretionary takes three arguments: 1. pre-hyphen mate-
rial 2. post-hyphen material, and 3. no-hyphenation material.

\def\SOUL@everyhyphen{%
\discretionary{%

\SOUL@setkern\SOUL@hyphkern
\char\hyphenchar\font

}{}{%
\hbox{\kern1pt\cdot}%

}%
}%

19

Explicit hyphens like dashes and slashes shall be set normally. We just have to
care for kerning.

\def\SOUL@everyexhyphen##1{%
\SOUL@setkern\SOUL@hyphkern
##1%
\discretionary{}{}{%

\SOUL@setkern\SOUL@charkern
}%

}

Now that the interface macros are defined, we can start the scanner.

\SOUL@
}

This lit ·tle macro will hard ·ly be good e ·nough for lin ·guists, al ·though it us ·es
TEX’s ex ·cel ·lent hy ·phen ·ation al ·go ·rithm, but it is at least a nice al ·ter ·na ·tive
to the \showhyphens com ·mand.

Acknowledgements

A big thank you goes to Stefan Ulrich for his tips and bug reports during
the development of versions 1.* and for his lessons on high quality typesetting.
The \caps mechanism was very much influenced by his suggestions. Thanks to
Alexander Shibakov and Frank Mittelbach, who sent me a couple of
bug reports and feature requests, and finally encouraged me to (almost) completely
rewrite soul. Rowland McDonnel gave useful hints for how to improve the
documentation, but I’m afraid he will still not be satisfied, and rightfully so. If
only documentation writing weren’t that boring. ;-)

References

[1] Bezos, Javier. The titlesec and titletoc package. CTAN-Archive, 1999,
v2.1.

[2] Carlisle, D. P. The color package. CTAN-Archive, 1997, v1.0d.

[3] Duden, Volume 1. Die Rechtschreibung. Bibliographisches Institut, Mann-
heim–Wien–Zürich, 1986, 19th edition.

[4] Knuth, Donald Ervin. The TEXbook. Addison–Wesley Publishing Com-
pany, Reading/Massachusetts, 1989, 16th edition.

[5] Muszynski, Carl and Přihoda, Eduard. Die Terrainlehre in Ver-
bindung mit der Darstellung, Beurtheilung und Beschreibung des Terrains
vom militärischen Standpunkte. L. W. Seidel & Sohn, Wien, 1872.

[6] Normalverordnungsblatt für das k. u. k. Heer. Exercier-Reglement für die
k. u. k. Cavallerie, I. Theil. Wien, k. k. Hof- und Staatsdruckerei, 1898,
4th edition.

[7] Raichle, Bernd. The german package. CTAN-Archive, 1998, v2.5e.

[8] Schmidt, Walter. Ein Makropaket für die gebrochenen Schriften. CTAN-
Archive, 1998, v1.2.

[9] Tschichold, Jan. Ausgewählte Aufsätze über Fragen der Gestalt des
Buches und der Typographie. Birkhäuser, Basel, 1987, 2nd edition.

20

[10] Willberg, Hans Peter and Forssmann, Friedrich. Lesetypogra-
phie. H. Schmidt, Mainz, 1997.

21

