
Documentation for multido.tex:

A loop macro for Generic TEX

Timothy Van Zandt∗

Version 1.4
January 14, 1993

multido.tex/multido.sty contains the \multido macro, which is a loop
facility for Generic TeX. This macro happens to be useful for drawing pic-
tures, and was originally developed for the PSTricks package,1 but you can
use it for other purposes as well.

A special feature is support of fixed-point addition. For example, PSTricks
uses the \multido to put numbers on axes, much like in the following LATEX
example:

\setlength{\unitlength}{1cm}

\small

\begin{picture}(8,1)(0,-.5)

\put(0,0){\vector(1,0){8}}

\multido{\i=0+1,\n=0+0.25}{8}{%

\put(\i,-.1){\line(0,1){.2}}

\put(\i,-.2){\makebox(0,0)[t]{\n}}}

\end{picture}

-
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

The general syntax for \multido is:

\multido{variables}{repetitions}{stuff}

stuff is whatever you want repeated; it can be any balanced TEX input.
repetitions is the number times stuff is repeated.

The first argument is the interesting one. variables is a comma-separated list
of variable declarations.2 Each variable declaration is of the form:

∗Author’s address: Department of Economics, Princeton University, Princeton, NJ
08544-1021, USA. Internet: tvz@Princeton.EDU

1PSTricks is an extensive collection of PostScript-based macros for Generic TeX. It is
available from the /pub directory at Princeton.EDU, and TEX archives.

2Don’t use commas to mark the decimal point within the variables argument, as they
will be confused for delimiters.

1



Documentation for multido.tex v.1.4 January 14, 1993 2

variable = initial value + increment

variable is a command sequence that can be used in stuff . It is initially set
to initial value, and is then incremented by increment with each repetition.

The first letter of the variable name determines the variable type. There are
four variable types:

Dimension (d or D) The initial value and the increment should be dimen-
sions (lengths, in LATEX parlance). The substitution text is a dimension,
with sp units. E.g., \dx=4cm+5pt.3

Number (n or N) The initial value and increment should be integers or
numbers with the same number of digits to the right of the decimal.
The one exception is that it is always OK for the initial value to be
an integer. There can be at most 8 digits on each side of the decimal.
The substitution text is a number, with fixed-point addition. E.g.,
\n=3+7.05, \Nx=5.30+-1.25.

Integer (i or I) The initial value and increment should be integers. This
gives the same result as using a number variable, but it is faster. E.g.,
\I=2+-1.

Real (r or R) The initial value and increment should be integers or num-
bers with at most 4 digits on each side of the decimal. The substitution
text is a number, but with floating point addition and occasional small
errors. This gives a less satisfactory result than using a number vari-
able, but it is faster. E.g., \ry=4.2+1.05.

Here are some examples that illustrate how the substitution text is deter-
mined:

\multido{}{10}{\TeX\ }

TEX TEX TEX TEX TEX TEX TEX TEX TEX TEX

\multido{\d=2pt+3pt}{5}{\d, }

131072sp, 327680sp, 524288sp, 720896sp, 917504sp,

\multido{\n=2+3}{10}{\n, }

2, 5, 8, 11, 14, 17, 20, 23, 26, 29,

\multido{\i=2+-3}{10}{\i, }

2, -1, -4, -7, -10, -13, -16, -19, -22, -25,

\multido{\r=2+3.05}{6}{\r, }

2.0, 5.05, 8.1, 11.15001, 14.20001, 17.25002,

3For PSTricks users, the unit is optional.



Documentation for multido.tex v.1.4 January 14, 1993 3

\multido{\n=2.00+-3.05}{8}{\n, }

2.00, -1.05, -4.10, -7.15, -10.20, -13.25, -16.30, -19.35,

Here are some details about the choice of names:

• Your computer won’t explode if you use names that conflict with TEX
internal commands, but you might want to check name conflicts if you
get inexplicable errors. The command \MultidoCheckNames can be
useful in this case. It causes \multido to report an error whenever you
use a variable name that is already defined. But see the next item.

• The whole \multido loop is grouped. This means, e.g., that although
\i is a Plain TEX command sequence (giving a dotless “ı”), you can
use the variable \i if you do not use any dotless i’s in stuff (and if you
do not use \MultidoCheckNames).

Here are a few more details:

• \Multido commands can be nested.

• Spaces after a \multido command are ignored. This makes \multido
more hospitable for pictures.

• Spaces between the various parts of the variables argument are ignored.

And finally here a few special features, some of which are of interest mainly
macro writers and other TEXnicians:

• The material that is repeated is not grouped, so that you can insert
your own recursive routines.

• There is a variant, \mmultido, which works just like \multido except
that the variables are all incremented once before starting.

• If you use \Multido or \MMultido instead of \multido or \mmultido,
resp., then the whole loop is not grouped. This can be useful, e.g., for
making entries in an alignment environment. However, these cannot
be nested within any \multido macro.

• If the number of repetitions is a negative number, the variables are
incremented backwards.

• The count register \multidocount keeps track of the number of current
iteration.

• The command \multidostop causes the \multido loop to quit at the
end of the current iteration.



Documentation for multido.tex v.1.4 January 14, 1993 4

• Fixed point addition is performed by \FPadd and \FPsub:

\FPadd{num1}{num2}{command}
\FPsub{num1}{num2}{command}

num2 is added to or subtracted from num1 , and the answers is stored
in the command sequence given as the third argument. The rules about
decimals and so on that apply to number variables apply here as well.
E.g., after

\FPsub{1.75}{-0.15}{\answer}

the definition of \answer is 1.90.

Changes:

V1.1 Fixed bug in \FPadd that gave wrong answer for, e.g., 3.4 +−0.2.

V1.2 Made unit optional for dimension variables when using PSTricks.

V1.3 Now 0 repetitions really gets 0 repetitions. \def\multido@ changed
to \long\def\multido@.

V1.4 Small change to make it compatible with PSTricks v0.93 and later.


