‘pst-fill’
A PSTricks package for filling and tiling areas

Timothy van ZANDT” (documentation by Denis Girou')

December 12, 1997 — Version 97 patch 2

Documentation revised June 30, 2000

/Abstract: ‘pst-fill’ is a PSTricks (13), (6), (14), (9), (7) packageto\

draw easily various kinds of filling and tiling of areas. It is also a good
example of the great power and flexibility of PSTricks, as in fact it is a
very short program (it body is around 200 lines long) but nevertheless
really powerful.

It was written in 1994 by Timothy VAN ZANDT but publicly available
only in PSTricks 97 and without any documentation. We describe here
the version 97 patch 2 of December 12, 1997, which is the original one
modified by myself to manage tilings in the so-called automatic mode.
This article would like to serve both of reference manual and of user’s
guide.

This package is available on CTAN in the graphics/pstricks di-

Qctory (files latex/pst-fill.sty and generic/pst-fill.tex). /

1 Introduction

Here we will refer as filling as the operation which consist to fill a defined
area by a pattern (or a composition of patterns). We will refer as tiling as the
operation which consist to do the same thing, but with the control of the starting
point, which is here the upper left corner. The pattern is positioned relatively
to this point. This make an essential difference between the two modes, as
without control of the starting point we can’t draw tilings (sometimes called
tesselations) as used in many fields of Art and Science!.

Nevertheless, as tilings are a wide and difficult field in mathematics, this
package is limited to simple ones, mainly monohedral tilings with one prototile
(which can be composite, see section 3.1). With some experience and wiliness
we can do more and obtained easily rather sophisticated results, but obviously
hyperbolic tilings like the famous ESCHER ones or aperiodic tilings like the PEN-
ROSE ones are not in the capabilities of this package. For more complex needs,
we must used low level and more painfull technics, with the basic \multido and
\multirput macros.

*INSEAD, Economics and Political Science, Fontainebleau, France —
<tvzQ@econ.insead.fr>.

fCNRS/IDRIS — Centre National de la Recherche Scientifique / Institut du
Développement et des Ressources en Informatique Scientifique, Orsay , France —

<Denis.Girou@idris.fr>.
LFor an extensive presentation of tilings, in their history and usage in many fields, see the
reference book (8).

In the TEX world, few work was done on tilings. You can look at the tile extension of
the Xy-pic package (10), at the articles of Kees VAN DER LAAN (11, paragraph 7) (the tiling
was in fact directly done in PostScript) and (12), at the METAPOST program (available on
graphics/metapost/contrib/macros/truchet) by Denis ROEGEL for the TRUCHET contest in
1995 (5) and at the METAPOST package (2) to draw patterns, which have a strong connection
with tilings.

2 Package history and description of it two dif-
ferent modes

As already said, this package was written in 1994 by Timothy VAN ZANDT. Two
modes were defined, called respectively manual and automatic. For both, the
pattern is generated on contiguous positions in a rather large area which include
the region to fill, later cut to the required dimensions by clipping mechanism.
In the first mode, the pattern is explicitely inserted in the PostScript file each
time. In the second one, the result is the same but with an unique explicit
insertion of the pattern and a repetition done by PostScript. Nevertheless, in
this method, the control of the starting point was loosed, so it allowed only to
fill a region and not to tile it.

See the difference between the two modes, tiling: and filling:

or as we can see that initial position is arbitrary and
dependent of the current point.

It’s clear that usage of filling is very restrictive comparing to tiling, as desired
effects required very often the possibility to control the starting point. So, this
mode was of limited interest, but unfortunately the manual one has the very big
disadvantage to require very huge amounts of ressources, mainly in disk space
and consequently in printing time. A small tiling can require sometimes several
megabytes in manual mode! So, it was very often not really usable in practice.

It is why I modified the code, to allow tilings in automatic mode, controlling
in this mode too the starting point. And most of the time, that is to say if some
special options are not used, the tiling is done exactly in the region described,
which make it faster. So there is no more reason to use the manual mode,
apart very special cases where automatic one cannot work, as explained later —
currently, I know only one case.

To load this modified automatic mode, with IXTEX use simply:
\usepackage [tiling] {pst-fill}
and in plain TEX after:

\input{pst-fill}
add the following definition:
\def\PstTiling{true}

To obtain the original behaviour, just don’t use the tiling optional keyword
at loading.

Take care than in tiling mode, I introduce also some other changes. First I
define aliases on some parameter names for consistancy (all specific parameters
will begin by the £ill prefix in this case) and I change some default values,
which were not well adapted for tilings (fillsep is set to 0 and as explained
fillsize set to auto). I rename fillcycle to fillcyclex. I also restore
normal way so that the frame of the area is drawn and all line (linestyle,
linecolor, doubleline, etc.) parameters are now active (but there are not in
non tiling mode). And I also introduce new parameters to control the tilings
(see below).

In all the following examples, we will consider only the tiling mode.

To do a tiling, we have just to define the pattern with the macro
and to use the new fillstyle [EEEENBA.

Note that tilings are drawn from left to right and top to bottom, which can
have an importance in some circonstances.

PostScript programmers can be also interested to know that, even in the
automatic mode, the iterations of the pattern are managed directly by the
PostScript code of the package which used only PostScript Level 1 operators.

The special ones introduced in Level 2 for drawing of patterns (1, section 4.9)
are not used.

And first, for conveniance, we define a simple \Tiling macro, which will
simplify our examples:

1 | \newcommand{\Tiling}[2] [1{%

2| \edef\Temp{#11}/

3| \begin{pspicturel}#2

4 \ifx\Temp\empty

5 \psframe[fillstyle=boxfill]#2

6 \else

7 \psframe [fillstyle=boxfill ,#1]#2
8 \fi

9| \end{pspicture}}

2.1 Parameters

There are 14 specific parameters available to change the way the filling/tiling
is defined, and one debugging option.

fillangle (real): the value of the rotation applied to the patterns (Default: 0).

In this case, we must force the tiling area to be notably larger than the area
to cover, to be sure that the defined area will be covered after rotation.

\newcommand{\Square}{/

2| \begin{pspicture}(1,1)
\psframe [dimen=middle] (1,1)

\end{pspicturel}}

[

w

Iy

\psset{unit=0.5}

\psboxfill{\Square}
\Tiling[fillangle=E]1{(3,3)}\hspace{3cm}
\Tiling[fillangle=RA0N1{(3,3)}

o

<

0

©

fillsepx (real|dim): value of the horizontal separation between consecutive pat-
terns (Default: 0 for tilings®, 2pt otherwise).

)

(

fillsepy (real|dim): value of the vertical separation between consecutive pat-
terns (Default: 0 for tilings®, 2pt otherwise).

fillsep (real|dim): value of horizontal and vertical separations between consec-
utive patterns (Default: 0 for tilings®, 2pt otherwise).

These values can be negative, which allow the tiles to overlap.

1| \psset{unit=0.5}

2| \psboxfill{\Square}

3| \Tiling[fillsepz=pRum]{(3,3)}\hfill
4| \Tiling[fillsepy=HEMM1{(3,3) }\hfill
5| \Tiling[fillsep=[U1{(3,3)\hfill
6 [\Tiling[fillsep -] {(3,3)}

2This option was added by me, is not part of the original package and is available only if
the tiling keyword is used when loading the package.

— 1] 1]
[] (1]

fillcyclex® (integer): Shift coefficient applied to each row (Default: 0).

fillcycley? (integer): Same thing for columns (Default: 0).

fillcycle? (integer): Allow to fix both fillcyclex and fillcycley directly to
the same value (Default: 0).

For instance, if fillcyclex is 2, the second row of patterns will be horizon-
tally shifted by a factor of % = 0.5, and by a factor of 0.333 if fillcyclex is 3,
etc.). These values can be negative.

1| \psset{unit=0.5}
2 | \psboxfill{\Square}
3| \newcommand{\TilingA} [1]1{\Tiling[fillcyclex=E]1{(3,3)}}

5| \TilingA{[@}\hfill\TilingA{FI}\hfil1\TilingA{B}\hfil1\TilingA{E}

7 | \vspace{3mm}
8| \TilingA{BA}\hfill\TilingA{BN\hfilI\TilingA{@}\hfi11\TilingA{EEI}

10 | \vspace{3mm}

1| \Tiling[fillcycley=RI1{(3,3)}\hfill
12 [\Tiling[fillcycley=RI1{(3,3)}\hfill
13 [\Tiling[fillcycley=II1{(3,3)}\hfill
14| \Tiling[fillcycle=RI1{(3,3)\hfill

fillmovex? (real/dim): value of the horizontal moves between consecutive pat-
terns (Default: 0).

fillmovey? (real|dim): value of the vertical moves between consecutive patterns
(Default: 0).

fillmove? (real|dim): value of horizontal and vertical moves between consecu-
tive patterns (Default: 0).

These parameters allow the patterns to overlap and to draw some special
kinds of tilings. They are implemented only for the automatic and tiling modes
and their values can be negative.

In some cases, the effect of these parameters will be the same that with the
fillcycle? ones, but you can see that it is not true for some other values.

3Tt was fillcycle in the original version.

\psset{unit=0.53}
\psboxfill{\Square}
\Tiling[fillmovez =[] {(3,3)}\hfill
\Tiling[fillmovey =[] {(3,3)}\hfill
\Tiling[fillimove =[] {(3,3)}\hfill
\Tiling[fillmove =M1 {(3,3)}

[] =l Iaus [P |

fillsize (auto|{(real|dim,real|dim)(real|dim,real|dim)}) : The choice of auto-
matic mode or the size of the area in manual mode. If first pair
values are not given, (0,0) is used. (Default: auto when tiling mode
is used, (-15¢m,-15¢m)(15¢m,15¢m) otherwise).

As explained in the introduction, the manual mode can require very huge
amount of computer ressources. So, it usage is to discourage in front off the
automatic mode. It seems only useful in special circonstances, in fact when the
automatic mode failed, which is known only in one case, for some kinds of EPS
files, as the ones produce by dump of portions of screens (see 3.2).

fillloopaddx? (integer): number of times the pattern is added on left and right
positions (Default: 0).

fillloopaddy? (integer): number of times the pattern is added on top and bot-
tom positions (Default: 0).

fillloopadd? (integer): number of times the pattern is added on left, right, top
and bottom positions (Default: 0).

These parameters are only useful in special circonstances, as for complex
patterns when the size of the rectangular box used to tile the area doesn’t cor-
respond to the pattern itself (see an example in Figure 3.1) and also sometimes
when the size of the pattern is not a divisor of the size of the area to fill and
that the number of loop repeats is not properly computed, which can occur.

They are implemented only for the tiling mode.

PstDebug? (integer, 0 or 1): to require to see the exact tiling done, without clip-
ping (Default: 0).

It’s mainly useful for debugging or to understand better how the tilings are
done. It is implemented only for the tiling mode.

\psset{unit=0.3, PstDebug =M}
\psboxfill{\Square}
\psset{linewidth=1mm}

\vspace{0.8cm}

\Tiling{(2,2)}\hspace{3cm}
\Tiling[fillcyclex=21{(2,2)}\hspace{4cm}
\Tiling[fillmove=0.51{(2,2)}

[

w

~

o

[

0

10

11

12

13

14

1

o

16

17

1

o

1

©

2

o

-

w

I

o

<

[

©

10

1

—

12

1:

w

14

15

3 Examples

In fact this unique \psboxfill macro allow a lot a variations and different
usages. We will try here to demonstrate this.

3.1 Kind of tiles

Of course, we can access to all the power of PSTricks macros to define the tiles
(patterns) used. So, we can define complicated ones.

Here we give four other Archimedian tilings (those built with only some
regular polygons) among the twelve existing, first discovered completely by Jo-
hanes KEPLER at the beginning of 17th century (8), the two other regular ones
with the tiling by squares, formed by a unique regular polygon, and two other
formed by two different regular polygons.

\newcommand{\Triangle}{’
\begin{pspicture}(1,1)
\pstriangle[dimen=middle] (0.5,0) (1,1)
\end{pspicturel}}
\newcommand{\Hexagon}{’
% sin(60)=0.866
\begin{pspicture}(0.866,0.75)
\SpecialCoor
% Hexagon
\pspolygon[dimen=middle]
(0.5;30)(0.5;90) (0.5;150) (0.5;210) (0.5;270) (0.5;330)
\end{pspicturel}}

\psset{unit=0.5}

\psboxfi11{|FFEErraty}

\Tiling{(4,4)}\hfill
% The two other regular tilings
\Tiling[fillcyclex=2]1{(4,4)}\hfill

\psboxfil1{| STy’

\Tiling[fillcyclex=2,fillloopaddy=11{(5,5)}

\newcommand{\ArchimedianA}{/
% Archimedian tiling 372.4.3.4
\psset{dimen=middle}
% sin(60)=0.866
\begin{pspicture}(1.866,1.866)
\psframe(1,1)
\psline(1,0)(1.866,0.5)(1,1)(0.5,1.866)(0,1)(-0.866,0.5)
\psline(0,0)(0.5,-0.866)
\end{pspicturel}}
\newcommand{\ArchimedianB}{}
% Archimedian tiling 4.87°2
\psset{dimen=middle,unit=1.53}
% sin(22.5)=0.3827 ; cos(22.5)=0.9239
\begin{pspicture}(1.3066,0.6533)
\SpecialCoor

16

17

18

19

20

2

=

2

]

2

w

2

=

V)
@

V)

IS

o

~

3

1

o

1

=

1

S

13

14

1

o

1

2

3

% Octogon
\pspolygon(0.5;22.5) (0.5;67.5) (0.5;112.5) (0.5;157.5)
(0.5;202.5)(0.5;247.5)(0.5;292.5) (0.5;337.5)
\end{pspicturel}}

\psset{unit=0.5}

\psboxfill {VNgelabRul-YehRNNN
\Tiling[fillmove=0.5]1{(7,7)}\hfill

\psboxfill {VNgeabhulYehR:Naz]+

\Tiling[fillcyclex=2,fillloopaddy=11{(7,7)}

We can of course tile an area arbitrarily defined. And with the addfillstyle
parameter®, we can easily mix the boxfill style with another one.

\psset{unit=0.5,dimen=middle}
\psboxfill{%
\begin{pspicture}(1,1)
\psframe(1,1)
\pscircle(0.5,0.5){0.25%}
\end{pspicturel}}
\begin{pspicture}(4,6)
\pspolygon[fillstyle=boxzfill ,fillsep=0.25]
(0,1)(1,4)(4,6)(4,0)(2,1)
\end{pspicture}
\hspace{2cm}
\begin{pspicture}(4,4)
\pscircle[linestyle=none,fillstyle=solid,fillcolor=yellow,
B -bozfill ,£illsep=0.51(2,2){2}
\end{pspicture}

@G
Sl o] I~

@@% 2119 |«
[

Various effects can be obtained, sometimes complicated ones very easily, as
in this example reproduced from one shown by Slavik JABLAN in the field of
OpTiles, inspired by the Op-art:

\newcommand{\ProtoTile}{%
\begin{pspicture}(1,1)
% 1/12=0.08333

4Introduced in PSTricks 97.

IS

o

10

11

12

18

@

14

15

16

1

©

19

2

=]

-

N

1

.

1

S

\psset{linestyle=none,linewidth=0,
hatchwidth=0.08333\psunit,hatchsep=0.08333\psunit}
\psframe[fillstyle=solid,fillcolor=black,
addfillstyle=hlines,hatchcolor=white] (1,1)
\pswedge [fillstyle=solid,fillcolor=vwhite,
addfillstyle=hlines]{1}{0}{90}
\end{pspicturel}}

\newcommand{\BasicTile}{%
\begin{pspicture}(2,1)
\rput [1b] (0,0){\ProtoTile}
\rput [1b] (1,0){\rotateleft{\ProtoTilel}}
\end{pspicturel}}

\ProtoTile\hfill\BasicTile\hfill
\psboxfill{\BasicTile}
\Tiling[fillcyclex=2]1{(4,4)}

ZANNZA

</, \\‘ N\

A\

It is also directly possible to surimpose several different tilings. Here is the
splendid visual proof of the PYTHAGORE theorem done by the arab mathemati-
cian ANNAIRIZI around the year 900, given by superposition of two tilings by

squares of different sizes.

\psset{unit=1.5,dimen=middle}
\begin{pspicturex}(3,3)
\psboxfill{\begin{pspicturel}(1,1)
\psframe(1,1)

\end{pspicturel}}
\psframe[fillstyle=boxfill] (3,3)
\psboxfill{\begin{pspicturel}(1,1)

\rput{-37}{\psframe[linecolor=red] (0.8,0.8)}

\end{pspicturel}}

\psframe [fillstyle=boxfill] (3,4)

\end{pspicturex*}

\pspolygon[fillstyle=hlines,hatchangle=90](1,2)(1.64,1.53)(2,2)

[CE

aow

© o N o w

11

12

13

14

15

1

=N

17

=~ w N —

o

© o N o

In a same way, it is possible to build tilings based on figurative patterns, in
the style of the famous ESCHER ones. Following an example of André DELEDICQ
(4), we first show a simple tiling of the pI category (according to the interna-
tional classification of the 17 symmetry groups of the plane first discovered by
the russian crystalographer Jevgraf FEDOROV at the end of the 19th century):

\newcommand{\SheepHead} [1]{/
\begin{pspicture}(3,1.5)
\pscustom[liftpen=2,fillstyle=solid,fillcolor=#1]1{%
\pscurve(0.5,-0.2)(0.6,0.5)(0.2,1.3)(0,1.5)(0,1.5)
(0.4,1.3)(0.8,1.5)(2.2,1.9)(3,1.5)(3,1.5)(3.2,1.3)
(3.6,0.5)(3.4,-0.3)(3,0)(2.2,0.4)(0.5,-0.2)}
\pscirclex*(2.65,1.25){0.12\psunit} % Eye
\psccurvex*(3.5,0.3) (3.35,0.45)(3.5,0.6)(3.6,0.4)% Muzzle
% Mouth
\pscurve(3,0.35) (3.3,0.1)(3.6,0.05)
% Ear
\pscurve(2.3,1.3)(2.1,1.5)(2.15,1.7)
\pscurve(2.1,1.7)(2.35,1.6)(2.45,1.4)
\end{pspicturel}}

\psboxfill{\psset{unit=0.5}\SheepHead{yellow}\SheepHead{cyan}}
\Tiling[fillcyclex=2,fillloopadd=1]{(10,5)}

Now a tiling of the pg category (the code for the kangaroo itself is too long
to be shown here, but has no difficulties ; the kangaroo is reproduce from an
original picture from Raoul RABA and here is a translation in PSTricks from the
one drawn by Emmanuel CHAILLOUX and Guy COUSINEAU for their MLgraph
system (3)):

\psboxfill{%
\psset{unit=0.4}
\Kangaroo{yellow}\Kangaroo{red}/
\Kangaroo{cyan}\Kangaroo{green}/
\scalebox{-1 1}{J
\rput (1.235,4.8){%
\Kangaroo{green}\Kangaroo{cyanl}¥%
\Kangaroo{red}\Kangaroo{yellow}}}}
\Tiling[fillloopadd=11{(10,6)}

=~ w N =

o

© o N o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

And here a WANG tiling (15), (8, chapter 11), based on very simple tiles of
the form of a square and composed of four colored triangles. Such tilings are
built with only a matching color constraint. Despite of it simplicity, it is an
important kind of tilings, as WANG and others used them to study the special
class of aperiodic tilings, and also because it was shown that surprisingly this
tiling is similar to a TURING machine.

\newcommand{\WangTile} [4]{%
\begin{pspicture}(1,1)
\pspolygon*[linecolor=#1](0,0) (0,1)(0.5,0.5)
\pspolygon*[linecolor=#2](0,1)(1,1)(0.5,0.5)
\pspolygon*[linecolor=#3](1,1)(1,0)(0.5,0.5)
\pspolygon*[linecolor=#4] (1,0)(0,0)(0.5,0.5)
\end{pspicture}}

\newcommand{\WangTileA}{\WangTile{cyan}{yellow}{cyan}{cyan}}

\newcommand{\WangTileB}{}
\WangTile{yellow}{cyan}{cyan}{red}}

\newcommand{\WangTileC}{%
\WangTile{cyan}{red}{yellow}{yellow}}

\newcommand{\WangTiles}[1] [1{%
\begin{pspicture}(3,3)

\psset{ref=1b}

\rput (0,2) {\WangTileB}/
\rput (1,2){\WangTileA}%
\rput (2,2) {\WangTileC}

\rput (0,1) {\WangTileC}%
\rput(1,1){\WangTileB}/
\rput(2,1){\WangTileA}

\rput (0,0) {\WangTileA}/
\rput (1,0){\WangTileC}%
\rput(2,0){\WangTileB}

#1

\end{pspicture}}

\WangTileA\hfill\WangTileB\hfill\WangTileC\hfill
\WangTiles [{\psgrid[subgriddiv=0,gridlabels=0](3,3)}]1\hfill
\psset{unit=0.4}

\psboxfi11{|\ETyEnEy}

\Tiling{(12,12)}

[

w

IS

o

-

M)

w

IS

MIAV

3.2 External graphic files

We can also fill an arbitrary area with an external image. We have only, as
usual, to matter of the BoundingBox definition if there is no one provided or
if it is not the accurate one, as for the well known tiger picture part of the
ghostscript distribution.

\psboxfill{} Strangely require zl=z2...
\begin{pspicture}(0,1)(0,4.1)
\includegraphics[bb=17 176 560 74,width=3cm]{images/[EV{3q"
\end{pspicturel}}
\Tiling{(6,6.2)}

Nevertheless, there are some special files for which the automatic mode
doesn’t work, specially for some files obtained by a screen dump, as in the
next example, where a picture was reduced before it conversion in the Encap-
sulated PostScript format by a screen dump utility. In this case, usage of the
manual mode is the only alternative, at the price of the real multiple inclusion
of the EPS file. We must take care to specify the correct fillsize parameter,
because otherwise the default values are large and will load the file many times,
perhaps just really using few occurrences as the other ones would be clipped...

\psboxfill{\includegraphics{images/FlNIIaI}
\begin{pspicture}(8,4)

\psellipse[fillstyle=bozfill ,fillsize={(8,4)}](4,2)(4,2)
\end{pspicture}

10

11

12

13

14

3.3 Tiling of characters

We can also use the \psboxfill macro to fill the interior of characters for

special effects like these ones:

\DeclareFixedFont{\bigsf}{T1}{phv}{b}{n}{4.5cm}
\DeclareFixedFont{\smallrm}{T1}{ptm}{m}{n}{3mm}
\psboxfill{\smallrm EFECYFCPIEVENNN"
\begin{pspicturex}(8,4)
\centerline{%
\pscharpath[fillstyle=gradient,gradangle=-45,
gradmidpoint=0.5,addfillstyle=bozfill,
fillangle=45,fillsep=0. 7mm]
{\rput [b] (0,0.1){\bigsf FIIII}}}
\end{pspicturex}

\DeclareFixedFont{\mediumrm}{T1}{ptm}{m}{n}{2cm}
\psboxfill{%
\psset{unit=0.1,linewidth=0.2pt}
\Kangaroo{PeachPuff}\Kangaroo{PaleGreen},
\Kangaroo{LightBlue}\Kangaroo{LemonChiffon}%
\scalebox{-1 1}{%
\rput (1.235,4.8){%
\Kangaroo{LemonChiffon}\Kangaroo{LightBluel}
\Kangaroo{PaleGreen}\Kangaroo{PeachPuff}}}}
% A kangaroo of kangaroos. ..
\begin{pspicture}(8,2)
\pscharpath[linestyle=none,fillstyle=bozfill ,fillloopadd=1]
{\rput [b] (4,0){\mediumrm EETTEEEI}}

\end{pspicture}
» o oot B » S B 2% 9
FRCN S e -8 -S WA

Y}

=

N

w

<

©

10

1

.

12

13

14

16

17

3.4 Other kinds of usage

Other kinds of usage can be imagined. For instance, we can use tilings in a sort
of degenerated way to draw some special lines made by a unique or multiple
repeating patterns. But it can be only a special dashed line, as here with three
different dashes:

\newcommand{\Dashes}{%
\psset{dimen=middle}
\begin{pspicture}(0,-0.5\pslinewidth) (1,0.5\pslinewidth)
\rput (0,0){\psline(0.4,0)}%
\rput (0.5,0){\psline(0.2,0)}%
\rput(0.8,0){\psline(0.1,0)}
\end{pspicturel}}

\newcommand{\SpecialDashedLine} [3]{%
\psboxfill{#3}
\Tiling[linestyle=none]
{(#1,-0.5\pslinewidth) (#2,0.5\pslinewidth)}}

\SpecialDashedLine{0}{7}{\Dashes}

\psset{unit=0.5,linewidth=1mm,linecolor=red}
\SpecialDashedLine{0}{10}{\Dashes}

It allow also to use special patterns in business graphics, as in the following
example generated by PstChart?®.

Fantaisist repartition of kangaroos
in the world (in thousands)

2000

1500 |—- - - - d ... —
1000 |—- - - -- d ... —]

x
%,

Oceania Africa Asia America Europe

Figure 1: Bar chart generated by PstChart, with bars filled by patterns

5A personal development to draw business charts with PSTricks, not distributed.

[

M)

w

I

o

[N

<

0

10

11

12

13

14

16

17

18

19

20

21

22

23

24

4 “Dynamic” tilings

In some cases, tilings used non static tiles, that is to say that the prototile(s),
even if unique, can have several forms, by instance specified by different colors
or rotations, not fixed before generation or varying each time.

4.1 Lewthwaite-Pickover-Truchet tiling

We give here for example the so-called Truchet tiling, which much be in fact
better called Lewthwaite-Pickover-Truchet (LPT) tiling®.

The unique prototile is only a square with two opposite circle arcs. This tile
has obviously two positions, if we rotate it from 90 degrees (see the two tiles on
the next figure). A LPT tiling is a tiling with randomly oriented LPT tiles. We
can see that even if it is very simple in it principle, it draw sophisticated curves
with strange properties.

Nevertheless, in the straightforward way ‘pst-fill' does not work, because the
\psboxfill macro store the content of the tile used in a TEX box, which is
static. So the calling to the random function is done only one time, which
explain that only one rotation of the tile is used for all the tiling. It’s only the
one of the two rotations which could differ from one drawing to the next one...

% LPT prototile
\newcommand{\ProtoTileLPT}{%
\psset{dimen=middle}
\begin{pspicture}(1,1)
\psframe(1,1)
\psarc(0,0){0.5}{0}{90}
\psarc(1,1){0.5}{-180}{-90}
\end{pspicturel}}

% LPT tile
\newcount\Boolean
\newcommand{\BasicTileLPT}{%
% From random.tex by Donald Arseneau
\setrannum{\Boolean}{0}{1}%
\ifnum\Boolean=0
\ProtoTileLPTY
\else
\rotateleft{\ProtoTileLPT}},
\fi}

\ProtoTileLPT\hfill\rotateleft{\ProtoTileLPT}\hfill
\psset{unit=0.53}

\psboxfill {{EFTENINY

\Tiling{(5,5)}

N /

\\ \\ \\ \\ \\
\\ \\ \\ \\ \\
\\ \\ \\ \\ \\
\\ \\ \\ \\ \\
\\ \\ \\ \\ \\

A (]

But, for simple cases, there is a solution to this problem using a mixture
of PSTricks and PostScript programming. Here the PSTricks construction

SFor description of the context, history and references about Sébastien TRUCHET and this
tiling, see (5).

[

N

10

11

12

13

14

[
15

16

17

18

19

20

21

22

23

2

=

V)
@

\pscustom{\code{...}} allow to insert PostScript code inside the EXIEX +
PSTricks one.

Programmation is less straightforward, but it has also the advantage to be
notably faster, as all the tilings operations are done in PostScript, and mainly
to not be limited by TEX memory (the TEX + PSTricks solution I wrote in 1995
for the colored problem was limited to small sizes for this reason). Just note
also that \pslbrace and \psrbrace are two PSTricks macros to define and be
able to insert the { and } characters.

% LPT prototile

\newcommand{\ProtoTileLPT}{}
\psset{dimen=middle}
\psframe(1,1)
\psarc(0,0){0.5}{0}{90}
\psarc(1,1){0.5}{-180}{-90}}

% Counter to change the random seed
\newcount\InitCounter

% LPT tile
\newcommand{\BasicTileLPT}{}
\InitCounter=\the\time
\pscustom{\code{
rand \the\InitCounter\space sub 2 mod O eq \pslbracel}}
\begin{pspicture}(1,1)
\ProtoTileLPT
\end{pspicturel}y,
\pscustom{\code{\psrbrace \pslbrace}}
\rotateleft{\ProtoTileLPT}%
\pscustom{\code{\psrbrace ifelse}}}

\psset{unit=0.4,linewidth=0.4pt}

\psboxfill {ANEEFRYENRINZN}

\Tiling{(15,15)}

ENENNERELENNNL
A nDliAaADhTAarbhlAarniaad

<\/r{/§\{//r<\§\<\/r<\§\{/\k\k

S S Rt e et i et
NTANNTAAAANINT AT A A N

{’\\{’{’§\\\<\{’{’Jf<\§\{’Jf\\
/}<¥ﬁ"$J%Jf<\{/¢vﬁ“}§\4fﬂ/}
{’<\<\§\§\<\<\{’<\Jf{’§\{’<\/f
{/{/§\<\{/\k§\<\{/{/§\<\{/{/<\
§\Jf4\§\§\\K{’§\{’Jf{’§\§\/fjf

s e REt I e
NTAANTAANDNDTAANT TN

{/{/4/{/<\\k4/<\{/\k%/{/{/{/{/

AT AN AN N NN YA A A
NN AN AN A AN

Using the very surprising fact (see (5)) that coloration of these tiles do not
depend of their neighbors (even if it is difficult to believe as the opposite seems
obvious!) but only of the parity of the value of row and column positions, we
can directly program in the same way a colored version of the LPT tiling.

We have also introduce in the ‘pst-fill' code for tiling mode two new ac-
cessible PostScript variables, row and column®, which can be useful in some
circonstances, like this one.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3

e

3

]

33

3

=

3

o

% LPT prototile

\newcommand{\ProtoTileLPT}[2]{%
\psset{dimen=middle,linestyle=none,fillstyle=solid}
\psframe[fillcolor=#1](1,1)
\psset{fillcolor=#2}
\pswedge (0,0){0.5}{0}{90}
\pswedge (1,1){0.5}{-180}{-90}}

% Counter to change the random seed
\newcount\InitCounter

% LPT tile
\newcommand{\BasicTileLPT}[2]{%
\InitCounter=\the\time
\pscustom{\code{%
rand \the\InitCounter\space sub 2 mod 0 eq \pslbrace
add 2 mod 0 eq \pslbrace}}
\begin{pspicture}(1,1)
\ProtoTileLPT{#1}{#2}
\end{pspicturel}y,
\pscustom{\code{\psrbrace \pslbrace}}
\ProtoTileLPT{#2}{#11}/,
\pscustom{\code{’,
\psrbrace ifelse \psrbrace \pslbrace add 2 mod
0 eq \pslbrace}}
\rotateleft{\ProtoTileLPT{#2}{#1}3}%
\pscustom{\code{\psrbrace \pslbrace}}
\rotateleft{\ProtoTileLPT{#1}{#2}1}/
\pscustom{\code{\psrbrace ifelse \psrbrace ifelse}}}

AVsE e fbe$MBR] \BasicTileLPT{red}{yellow}

\Tiling{(4,4) F\hfill
\psset{unit=0.4}

\VsEl e MBR] \BasicTileLPT{blue}{cyan}}

\Tiling{(15,15)}

Another classic example is to generate coordinates and numerotation for
a grid. Of course, it is possible to do it directly in PSTricks using nested
\multido commands. It would be clearly easy to program, but, nevertheless,
for users who have a little knowledge of PostScript programming, this offer an
alternative which is useful for large cases, because on this way it will be notably
faster and less computer ressources consuming.

-

M)

N

10

12

13

14

15

16

17

18

1

©

2

=]

-

M)

IS

o

<

3

©

10

11

12

13

Remember here that the tiling is drawn from left to right, and top to bottom,
and note that the PostScript variable x2 give the total number of columns.

% \Escape will be the \ character
{\catcode‘\!=0\catcode ‘\\=11!gdef !Escape{\}}

\newcommand{\ProtoTile}{%
Nsquarel
\pscustom{’
\moveto(-0.9,0.75) % In PSTricks units
\code{%
/Times-Italic findfont 8 scalefont setfont
(\Escape() show & 3 string cvs show (,) show
3 string cvs show (\Escape)) show}
\moveto(-0.5,0.25) % In PSTricks units
\code{%
/Times-Bold findfont 18 scalefont setfont
1 0 0 setrgbcolor % Red color
/center {dup stringwidth pop 2 div neg O rmoveto} def
1 sub x2 mul add 3 string cvs center show}}}

\psboxfill{|ETITyEnEy
\Tiling{(6,4)}

11y 112 (@3 |14 (@b (1,8
1]2 4

(231 (2,§ 23) |24 |25 [(26)

10111|12

13|14| 15| 16| 17| 1t

41 (42 143 (44 @45 |46

4.2 A complete example: the Poisson equation

To finish, we will show a complete real example, a drawing to explain the
method used to solve the POISSON equation by a domain decomposition method,
adapted to distributed memory computers. The objective is to show the commu-
nications required between processes and the position of the data to exchange.
This code also show some useful and powerful technics for PSTricks program-
ming (look specially at the way some higher level macros are defined, and how
the same object is used to draw the four neighbors).

\newcommand{\Pattern}[1]{}
\begin{pspicture}(-0.25,-0.25) (0.25,0.25)
\rput{*0}{\psdot [dotstyle=#1]}
\end{pspicturel}}

\newcommand{\West}{\Pattern{o}}
\newcommand{\South}{\Pattern{x}}
\newcommand{\Central}{\Pattern{+3}}
\newcommand{\North}{\Pattern{square}}
\newcommand{\East}{\Pattern{trianglel}}

\newcommand{\Cross}{%
\pspolygon[unit=0.5,1inewidth=0.2,linecolor=red]

14

15

16

17

18

19

20

2

ot

22

23

24

25

26

27

28

29

30

3

e

32

33

34

3E

o

36

37

38

39

40

41

42

43

44

IS
o

59

60

61

62

63

64

66

67

68

69

70

7

iy

72

(0,0)(0,1)(1,1)(1,2)(2,2)(2,1)
(3,1)(3,0)(2,0)(2,-1)(1,-1) (1,00}

\newcommand{\StylePosition} [1]{%
\LARGE\textcolor{red}{\textbf{#1}}}

\newcommand{\SubDomain} [4]{%
\psboxfill{#4}
\begin{psclip}{\psframe[linestyle=none]#1}
\psframe[linestyle=#3](5,5)
\psframe [fillstyle=boxfill]#2
\end{psclip}}

\newcommand{\SendArea} [1]{%
\psframe[fillstyle=solid,fillcolor=cyan]#1}

\newcommand{\ReceiveData} [2]{%
\psboxfill{#2}
\psframe[fillstyle=solid,fillcolor=yellow,

addfillstyle=boxfill]#1}

\newcommand{\Neighbor} [2] {%

\begin{pspicture}(5,5)
\rput{*0}(2.5,2.5){\StylePosition{#1}}
\ReceiveData{(0.5,0)(4.5,0.5)}{\Central}
\SendArea{(0.5,0.5)(4.5,1)}
\SubDomain{(5,2)}{(0.5,0.5) (4.5,3) }{dashed}{#2}J,
% Recetve and send arrows
\pcarc[arcangle=45,arrows=->](0.5,-1.25)(0.5,0.25)
\pcarc[arcangle=45,arrows=->,linestyle=dotted,dotsep=2pt]

(4.5,0.75)(4.5,-0.75)

\end{pspicturel}}

\psset{dimen=middle,dotscale=2,fillloopadd=2}
\begin{pspicture}(-5.7,-5.7)(5.7,5.7)
% Central domain
\rput (0,0){%
\begin{pspicture}(5,5)
% Recetive from West, East, North and South
\ReceiveData{(0,0.5)(0.5,4.5)}{\West}
\ReceiveData{(4.5,0.5) (5,4.5)}{\East}
\ReceiveData{(0.5,4.5) (4.5,5)}{\North}
\ReceiveData{(0.5,0) (4.5,0.5)}{\South}
% Send area for West, East, North and South
\SendArea{(0.5,0.5)(1,4.5)}
\SendArea{(4,0.5)(4.5,4.5)}
\SendArea{(0.5,0.5)(4.5,1)}
\SendArea{(0.5,4)(4.5,4.5)}
% Central domain
\SubDomain{(5,5)}{(0.5,0.5)(4.5,4.5)}{solid}{\Central}
% Redraw overlapped lines
\psline(1,0.5)(1,4.5)
\psline(4,0.5)(4,4.5)
% Two crosses
\rput(1.5,4){\Cross}
\rput(2,2){\Cross}
\end{pspicturel}}
% The four neighbors
\rput (0,5.5){\Neighbor{N}{\North}}

\rput{-90}(5.5,0) {\Neighbor{E}{\East}}
\rput{90}(-5.5,0){\Neighbor{W}{\West}}
75| \rput{180}(0,-5.5){\Neighbor{S}{\South}}
\end{pspicture}

<
w

g
N

~
[

—_——— e — — —

>>D>D>D>D>DD
>>D>D>D>D>DD

[F+++++++

References

[1] Adobe, Systems Incorporated, PostScript Language Reference Manual,
Addison-Wesley, 2 edition, 1995.

1otr Bolek, METAPOST and patterns, oat, Volume 19, Number 3,
2] Piotr Bolek d TUGb Vol 19, Number 3
pages 276-283, September 1998, graphics/metapost/macros/mpattern.

[3] Emmanuel Chailloux, Guy Cousineau and Ascdnder Suérez, Programma-
tion fonctionnelle de graphismes pour la production d’illustrations tech-
niques, Technique et science informatique, Volume 15, Number 7, pages
977-1007, 1996 (in french).

[4] André Deledicq, Le monde des pavages, ACL Editions, 1997 (in french).

[5] Philippe Esperet and Denis Girou, Coloriage du pavage dit de Truchet,
Cahiers GUTenberg, Number 31, pages 5-18, December 1998 (in french).

[6] Denis Girou, Présentation de PSTricks, Cahiers GUTenberg, Number 16,
pages 21-70, February 1994 (in french).

[7] Michel Goossens, Sebastian Rahtz and Frank Mittelbach, The EKTgX
Graphics Companion, Addison-Wesley, 1997.

[8] Branko Griinbaum and Geoffrey Shephard, Tilings and Patterns, Freeman
and Company, 1987.

[9]

Alan Hoenig, TEX Unbound: BTEX & TpX Strategies, Fonts, Graphics, and
More, Oxford University Press, 1997.

Kristoffer H. Rose and Ross Moore, Xy-pic. Pattern and Tile extension,
available from CTAN, 1991-1998, macros/generic/diagrams/xypic.

Kees van der Laan, Paradigms: Just a little bit of PostScript, MAPS,
Volume 17, pages 137-150, 1996.

Kees van der Laan, Tiling in PostScript and METAFONT — Escher’s wink,
MAPS, Volume 19, Number 2, pages 39-67, 1997.

Timothy van Zandt, PSTricks. PostScript macros for Generic TEX, avail-
able from CTAN, 1993, graphics/pstricks.

Timothy van Zandt and Denis Girou, Inside PSTricks, TUGboat, Vol-
ume 15, Number 3, pages 239-246, September 1994.

Hao Wang, Games, Logic and Computers, Scientific American, pages 98—
106, November 1965.

