
Comparing and Merging Files
diff, diff3, sdiff, cmp, and patch

Edition 1.3, for diff 2.5 and patch 2.1
September 1993

by David MacKenzie, Paul Eggert, and Richard Stallman

Copyright c© 1992, 1993, 1994 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by the Foundation.

Overview 1

Overview

Computer users often find occasion to ask how two files differ. Perhaps one file is a newer
version of the other file. Or maybe the two files started out as identical copies but were changed
by different people.

You can use the diff command to show differences between two files, or each corresponding
file in two directories. diff outputs differences between files line by line in any of several formats,
selectable by command line options. This set of differences is often called a diff or patch. For files
that are identical, diff normally produces no output; for binary (non-text) files, diff normally
reports only that they are different.

You can use the cmp command to show the offsets and line numbers where two files differ. cmp
can also show all the characters that differ between the two files, side by side. Another way to
compare two files character by character is the Emacs command M-x compare-windows. See section
“Other Window” in The GNU Emacs Manual, for more information on that command.

You can use the diff3 command to show differences among three files. When two people have
made independent changes to a common original, diff3 can report the differences between the
original and the two changed versions, and can produce a merged file that contains both persons’
changes together with warnings about conflicts.

You can use the sdiff command to merge two files interactively.

You can use the set of differences produced by diff to distribute updates to text files (such
as program source code) to other people. This method is especially useful when the differences
are small compared to the complete files. Given diff output, you can use the patch program to
update, or patch, a copy of the file. If you think of diff as subtracting one file from another to
produce their difference, you can think of patch as adding the difference to one file to reproduce
the other.

This manual first concentrates on making diffs, and later shows how to use diffs to update files.

GNU diff was written by Mike Haertel, David Hayes, Richard Stallman, Len Tower, and
Paul Eggert. Wayne Davison designed and implemented the unified output format. The basic
algorithm is described in “An O(ND) Difference Algorithm and its Variations”, Eugene W. Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251–266; and in “A File Comparison Program”, Webb Miller
and Eugene W. Myers, Software—Practice and Experience Vol. 15 No. 11, 1985, pp. 1025–1040.

2 Comparing and Merging Files

The algorithm was independently discovered as described in “Algorithms for Approximate String
Matching”, E. Ukkonen, Information and Control Vol. 64, 1985, pp. 100–118.

GNU diff3 was written by Randy Smith. GNU sdiff was written by Thomas Lord. GNU cmp

was written by Torbjorn Granlund and David MacKenzie.

patch was written mainly by Larry Wall; the GNU enhancements were written mainly by Wayne
Davison and David MacKenzie. Parts of this manual are adapted from a manual page written by
Larry Wall, with his permission.

Chapter 1: What Comparison Means 3

1 What Comparison Means

There are several ways to think about the differences between two files. One way to think of
the differences is as a series of lines that were deleted from, inserted in, or changed in one file to
produce the other file. diff compares two files line by line, finds groups of lines that differ, and
reports each group of differing lines. It can report the differing lines in several formats, which have
different purposes.

GNU diff can show whether files are different without detailing the differences. It also provides
ways to suppress certain kinds of differences that are not important to you. Most commonly, such
differences are changes in the amount of white space between words or lines. diff also provides
ways to suppress differences in alphabetic case or in lines that match a regular expression that you
provide. These options can accumulate; for example, you can ignore changes in both white space
and alphabetic case.

Another way to think of the differences between two files is as a sequence of pairs of characters
that can be either identical or different. cmp reports the differences between two files character by
character, instead of line by line. As a result, it is more useful than diff for comparing binary files.
For text files, cmp is useful mainly when you want to know only whether two files are identical.

To illustrate the effect that considering changes character by character can have compared with
considering them line by line, think of what happens if a single newline character is added to the
beginning of a file. If that file is then compared with an otherwise identical file that lacks the
newline at the beginning, diff will report that a blank line has been added to the file, while cmp

will report that almost every character of the two files differs.

diff3 normally compares three input files line by line, finds groups of lines that differ, and
reports each group of differing lines. Its output is designed to make it easy to inspect two different
sets of changes to the same file.

1.1 Hunks

When comparing two files, diff finds sequences of lines common to both files, interspersed with
groups of differing lines called hunks. Comparing two identical files yields one sequence of common
lines and no hunks, because no lines differ. Comparing two entirely different files yields no common
lines and one large hunk that contains all lines of both files. In general, there are many ways to

4 Comparing and Merging Files

match up lines between two given files. diff tries to minimize the total hunk size by finding large
sequences of common lines interspersed with small hunks of differing lines.

For example, suppose the file ‘F’ contains the three lines ‘a’, ‘b’, ‘c’, and the file ‘G’ contains
the same three lines in reverse order ‘c’, ‘b’, ‘a’. If diff finds the line ‘c’ as common, then the
command ‘diff F G’ produces this output:

1,2d0
< a
< b
3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces this output:

1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always find an optimal matching
between the files; it takes shortcuts to run faster. But its output is usually close to the shortest
possible. You can adjust this tradeoff with the ‘--minimal’ option (see Chapter 5 [diff Performance],
page 35).

1.2 Suppressing Differences in Blank and Tab Spacing

The ‘-b’ and ‘--ignore-space-change’ options ignore white space at line end, and considers
all other sequences of one or more white space characters to be equivalent. With these options,
diff considers the following two lines to be equivalent, where ‘$’ denotes the line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$
Here lyeth muche rychnesse in lytell space. -- John Heywood $

Chapter 1: What Comparison Means 5

The ‘-w’ and ‘--ignore-all-space’ options are stronger than ‘-b’. They ignore difference even
if one file has white space where the other file has none. White space characters include tab,
newline, vertical tab, form feed, carriage return, and space; some locales may define additional
characters to be white space. With these options, diff considers the following two lines to be
equivalent, where ‘$’ denotes the line end and ‘^M’ denotes a carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$
He relyeth much erychnes seinly tells pace. --John Heywood ^M$

1.3 Suppressing Differences in Blank Lines

The ‘-B’ and ‘--ignore-blank-lines’ options ignore insertions or deletions of blank lines.
These options normally affect only lines that are completely empty; they do not affect lines that
look empty but contain space or tab characters. With these options, for example, a file containing

1. A point is that which has no part.

2. A line is breadthless length.
-- Euclid, The Elements, I

is considered identical to a file containing

1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I

1.4 Suppressing Case Differences

GNU diff can treat lowercase letters as equivalent to their uppercase counterparts, so that,
for example, it considers ‘Funky Stuff’, ‘funky STUFF’, and ‘fUNKy stuFf’ to all be the same. To
request this, use the ‘-i’ or ‘--ignore-case’ option.

6 Comparing and Merging Files

1.5 Suppressing Lines Matching a Regular Expression

To ignore insertions and deletions of lines that match a regular expression, use the ‘-I regexp’
or ‘--ignore-matching-lines=regexp’ option. You should escape regular expressions that contain
shell metacharacters to prevent the shell from expanding them. For example, ‘diff -I ’^[0-9]’’
ignores all changes to lines beginning with a digit.

However, ‘-I’ only ignores the insertion or deletion of lines that contain the regular expression if
every changed line in the hunk—every insertion and every deletion—matches the regular expression.
In other words, for each nonignorable change, diff prints the complete set of changes in its vicinity,
including the ignorable ones.

You can specify more than one regular expression for lines to ignore by using more than one
‘-I’ option. diff tries to match each line against each regular expression, starting with the last
one given.

1.6 Summarizing Which Files Differ

When you only want to find out whether files are different, and you don’t care what the differ-
ences are, you can use the summary output format. In this format, instead of showing the differences
between the files, diff simply reports whether files differ. The ‘-q’ and ‘--brief’ options select
this output format.

This format is especially useful when comparing the contents of two directories. It is also much
faster than doing the normal line by line comparisons, because diff can stop analyzing the files as
soon as it knows that there are any differences.

You can also get a brief indication of whether two files differ by using cmp. For files that are
identical, cmp produces no output. When the files differ, by default, cmp outputs the byte offset
and line number where the first difference occurs. You can use the ‘-s’ option to suppress that
information, so that cmp produces no output and reports whether the files differ using only its exit
status (see Chapter 11 [Invoking cmp], page 57).

Unlike diff, cmp cannot compare directories; it can only compare two files.

Chapter 1: What Comparison Means 7

1.7 Binary Files and Forcing Text Comparisons

If diff thinks that either of the two files it is comparing is binary (a non-text file), it normally
treats that pair of files much as if the summary output format had been selected (see Section 1.6
[Brief], page 6), and reports only that the binary files are different. This is because line by line
comparisons are usually not meaningful for binary files.

diff determines whether a file is text or binary by checking the first few bytes in the file; the
exact number of bytes is system dependent, but it is typically several thousand. If every character
in that part of the file is non-null, diff considers the file to be text; otherwise it considers the file
to be binary.

Sometimes you might want to force diff to consider files to be text. For example, you might
be comparing text files that contain null characters; diff would erroneously decide that those
are non-text files. Or you might be comparing documents that are in a format used by a word
processing system that uses null characters to indicate special formatting. You can force diff to
consider all files to be text files, and compare them line by line, by using the ‘-a’ or ‘--text’ option.
If the files you compare using this option do not in fact contain text, they will probably contain
few newline characters, and the diff output will consist of hunks showing differences between long
lines of whatever characters the files contain.

You can also force diff to consider all files to be binary files, and report only whether they
differ (but not how). Use the ‘--brief’ option for this.

In operating systems that distinguish between text and binary files, diff normally reads and
writes all data as text. Use the ‘--binary’ option to force diff to read and write binary data
instead. This option has no effect on a Posix-compliant system like GNU or traditional Unix.
However, many personal computer operating systems represent the end of a line with a carriage
return followed by a newline. On such systems, diff normally ignores these carriage returns on
input and generates them at the end of each output line, but with the ‘--binary’ option diff

treats each carriage return as just another input character, and does not generate a carriage return
at the end of each output line. This can be useful when dealing with non-text files that are meant
to be interchanged with Posix-compliant systems.

If you want to compare two files byte by byte, you can use the cmp program with the ‘-l’ option
to show the values of each differing byte in the two files. With GNU cmp, you can also use the ‘-c’
option to show the ASCII representation of those bytes. See Chapter 11 [Invoking cmp], page 57,
for more information.

8 Comparing and Merging Files

If diff3 thinks that any of the files it is comparing is binary (a non-text file), it normally reports
an error, because such comparisons are usually not useful. diff3 uses the same test as diff to
decide whether a file is binary. As with diff, if the input files contain a few non-text characters
but otherwise are like text files, you can force diff3 to consider all files to be text files and compare
them line by line by using the ‘-a’ or ‘--text’ options.

Chapter 2: diff Output Formats 9

2 diffOutput Formats

diff has several mutually exclusive options for output format. The following sections describe
each format, illustrating how diff reports the differences between two sample input files.

2.1 Two Sample Input Files

Here are two sample files that we will use in numerous examples to illustrate the output of diff
and how various options can change it.

This is the file ‘lao’:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.

This is the file ‘tzu’:

The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,

they have different names.
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

10 Comparing and Merging Files

In this example, the first hunk contains just the first two lines of ‘lao’, the second hunk contains
the fourth line of ‘lao’ opposing the second and third lines of ‘tzu’, and the last hunk contains just
the last three lines of ‘tzu’.

2.2 Showing Differences Without Context

The “normal” diff output format shows each hunk of differences without any surrounding
context. Sometimes such output is the clearest way to see how lines have changed, without the
clutter of nearby unchanged lines (although you can get similar results with the context or unified
formats by using 0 lines of context). However, this format is no longer widely used for sending out
patches; for that purpose, the context format (see Section 2.3.1 [Context Format], page 12) and
the unified format (see Section 2.3.2 [Unified Format], page 14) are superior. Normal format is the
default for compatibility with older versions of diff and the Posix standard.

2.2.1 Detailed Description of Normal Format

The normal output format consists of one or more hunks of differences; each hunk shows one
area where the files differ. Normal format hunks look like this:

change-command
< from-file-line
< from-file-line. . .

> to-file-line
> to-file-line. . .

There are three types of change commands. Each consists of a line number or comma-separated
range of lines in the first file, a single character indicating the kind of change to make, and a line
number or comma-separated range of lines in the second file. All line numbers are the original line
numbers in each file. The types of change commands are:

‘lar’ Add the lines in range r of the second file after line l of the first file. For example,
‘8a12,15’ means append lines 12–15 of file 2 after line 8 of file 1; or, if changing file 2
into file 1, delete lines 12–15 of file 2.

‘f ct’ Replace the lines in range f of the first file with lines in range t of the second file. This
is like a combined add and delete, but more compact. For example, ‘5,7c8,10’ means
change lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if changing file 2 into file 1,
change lines 8–10 of file 2 to read as lines 5–7 of file 1.

Chapter 2: diff Output Formats 11

‘rdl’ Delete the lines in range r from the first file; line l is where they would have appeared
in the second file had they not been deleted. For example, ‘5,7d3’ means delete lines
5–7 of file 1; or, if changing file 2 into file 1, append lines 5–7 of file 1 after line 3 of file
2.

2.2.2 An Example of Normal Format

Here is the output of the command ‘diff lao tzu’ (see Section 2.1 [Sample diff Input], page 9,
for the complete contents of the two files). Notice that it shows only the lines that are different
between the two files.

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

2.3 Showing Differences in Their Context

Usually, when you are looking at the differences between files, you will also want to see the
parts of the files near the lines that differ, to help you understand exactly what has changed. These
nearby parts of the files are called the context.

GNU diff provides two output formats that show context around the differing lines: context

format and unified format. It can optionally show in which function or section of the file the
differing lines are found.

If you are distributing new versions of files to other people in the form of diff output, you
should use one of the output formats that show context so that they can apply the diffs even if
they have made small changes of their own to the files. patch can apply the diffs in this case by
searching in the files for the lines of context around the differing lines; if those lines are actually
a few lines away from where the diff says they are, patch can adjust the line numbers accordingly

12 Comparing and Merging Files

and still apply the diff correctly. See Section 9.2 [Imperfect], page 50, for more information on
using patch to apply imperfect diffs.

2.3.1 Context Format

The context output format shows several lines of context around the lines that differ. It is the
standard format for distributing updates to source code.

To select this output format, use the ‘-C lines’, ‘--context[=lines]’, or ‘-c’ option. The argument
lines that some of these options take is the number of lines of context to show. If you do not specify
lines, it defaults to three. For proper operation, patch typically needs at least two lines of context.

2.3.1.1 Detailed Description of Context Format

The context output format starts with a two-line header, which looks like this:

*** from-file from-file-modification-time
--- to-file to-file-modification time

You can change the header’s content with the ‘-L label’ or ‘--label=label’ option; see Section 2.3.4
[Alternate Names], page 17.

Next come one or more hunks of differences; each hunk shows one area where the files differ.
Context format hunks look like this:

*** from-file-line-range ****

from-file-line
from-file-line. . .

--- to-file-line-range ----
to-file-line
to-file-line. . .

The lines of context around the lines that differ start with two space characters. The lines that
differ between the two files start with one of the following indicator characters, followed by a space
character:

Chapter 2: diff Output Formats 13

‘!’ A line that is part of a group of one or more lines that changed between the two files.
There is a corresponding group of lines marked with ‘!’ in the part of this hunk for the
other file.

‘+’ An “inserted” line in the second file that corresponds to nothing in the first file.

‘-’ A “deleted” line in the first file that corresponds to nothing in the second file.

If all of the changes in a hunk are insertions, the lines of from-file are omitted. If all of the
changes are deletions, the lines of to-file are omitted.

2.3.1.2 An Example of Context Format

Here is the output of ‘diff -c lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files). Notice that up to three lines that are not different are shown
around each line that is different; they are the context lines. Also notice that the first two hunks
have run together, because their contents overlap.

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

--- 1,6 ----
The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.
!

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,

*** 9,11 ****
--- 8,13 ----

The two are the same,
But after they are produced,

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

14 Comparing and Merging Files

2.3.1.3 An Example of Context Format with Less Context

Here is the output of ‘diff --context=1 lao tzu’ (see Section 2.1 [Sample diff Input], page 9,
for the complete contents of the two files). Notice that at most one context line is reported here.

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;

! The Named is the mother of all things.
Therefore let there always be non-being,

--- 1,4 ----
The Nameless is the origin of Heaven and Earth;

! The named is the mother of all things.
!

Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.3.2 Unified Format

The unified output format is a variation on the context format that is more compact because it
omits redundant context lines. To select this output format, use the ‘-U lines’, ‘--unified[=lines]’,
or ‘-u’ option. The argument lines is the number of lines of context to show. When it is not given,
it defaults to three.

At present, only GNU diff can produce this format and only GNU patch can automatically
apply diffs in this format. For proper operation, patch typically needs at least two lines of context.

2.3.2.1 Detailed Description of Unified Format

The unified output format starts with a two-line header, which looks like this:

Chapter 2: diff Output Formats 15

--- from-file from-file-modification-time
+++ to-file to-file-modification-time

You can change the header’s content with the ‘-L label’ or ‘--label=label’ option; see See Sec-
tion 2.3.4 [Alternate Names], page 17.

Next come one or more hunks of differences; each hunk shows one area where the files differ.
Unified format hunks look like this:

@@ from-file-range to-file-range @@
line-from-either-file
line-from-either-file. . .

The lines common to both files begin with a space character. The lines that actually differ
between the two files have one of the following indicator characters in the left column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

2.3.2.2 An Example of Unified Format

Here is the output of the command ‘diff -u lao tzu’ (see Section 2.1 [Sample diff Input],
page 9, for the complete contents of the two files):

--- lao Sat Jan 26 23:30:39 1991
+++ tzu Sat Jan 26 23:30:50 1991
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;
-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,
@@ -9,3 +8,6 @@
The two are the same,
But after they are produced,

they have different names.
+They both may be called deep and profound.

16 Comparing and Merging Files

+Deeper and more profound,
+The door of all subtleties!

2.3.3 Showing Which Sections Differences Are in

Sometimes you might want to know which part of the files each change falls in. If the files are
source code, this could mean which function was changed. If the files are documents, it could mean
which chapter or appendix was changed. GNU diff can show this by displaying the nearest section
heading line that precedes the differing lines. Which lines are “section headings” is determined by
a regular expression.

2.3.3.1 Showing Lines That Match Regular Expressions

To show in which sections differences occur for files that are not source code for C or similar
languages, use the ‘-F regexp’ or ‘--show-function-line=regexp’ option. diff considers lines
that match the argument regexp to be the beginning of a section of the file. Here are suggested
regular expressions for some common languages:

‘^[A-Za-z_]’
C, C++, Prolog

‘^(’ Lisp

‘^@\(chapter\|appendix\|unnumbered\|chapheading\)’
Texinfo

This option does not automatically select an output format; in order to use it, you must select
the context format (see Section 2.3.1 [Context Format], page 12) or unified format (see Section 2.3.2
[Unified Format], page 14). In other output formats it has no effect.

The ‘-F’ and ‘--show-function-line’ options find the nearest unchanged line that precedes
each hunk of differences and matches the given regular expression. Then they add that line to
the end of the line of asterisks in the context format, or to the ‘@@’ line in unified format. If no
matching line exists, they leave the output for that hunk unchanged. If that line is more than 40
characters long, they output only the first 40 characters. You can specify more than one regular
expression for such lines; diff tries to match each line against each regular expression, starting
with the last one given. This means that you can use ‘-p’ and ‘-F’ together, if you wish.

Chapter 2: diff Output Formats 17

2.3.3.2 Showing C Function Headings

To show in which functions differences occur for C and similar languages, you can use the ‘-p’
or ‘--show-c-function’ option. This option automatically defaults to the context output format
(see Section 2.3.1 [Context Format], page 12), with the default number of lines of context. You can
override that number with ‘-C lines’ elsewhere in the command line. You can override both the
format and the number with ‘-U lines’ elsewhere in the command line.

The ‘-p’ and ‘--show-c-function’ options are equivalent to ‘-F’^[_a-zA-Z$]’’ if the uni-
fied format is specified, otherwise ‘-c -F’^[_a-zA-Z$]’’ (see Section 2.3.3.1 [Specified Headings],
page 16). GNU diff provides them for the sake of convenience.

2.3.4 Showing Alternate File Names

If you are comparing two files that have meaningless or uninformative names, you might want
diff to show alternate names in the header of the context and unified output formats. To do
this, use the ‘-L label’ or ‘--label=label’ option. The first time you give this option, its argument
replaces the name and date of the first file in the header; the second time, its argument replaces
the name and date of the second file. If you give this option more than twice, diff reports an
error. The ‘-L’ option does not affect the file names in the pr header when the ‘-l’ or ‘--paginate’
option is used (see Section 4.2 [Pagination], page 33).

Here are the first two lines of the output from ‘diff -C2 -Loriginal -Lmodified lao tzu’:

*** original
--- modified

2.4 Showing Differences Side by Side

diff can produce a side by side difference listing of two files. The files are listed in two columns
with a gutter between them. The gutter contains one of the following markers:

white space
The corresponding lines are in common. That is, either the lines are identical, or the
difference is ignored because of one of the ‘--ignore’ options (see Section 1.2 [White
Space], page 4).

18 Comparing and Merging Files

‘|’ The corresponding lines differ, and they are either both complete or both incomplete.

‘<’ The files differ and only the first file contains the line.

‘>’ The files differ and only the second file contains the line.

‘(’ Only the first file contains the line, but the difference is ignored.

‘)’ Only the second file contains the line, but the difference is ignored.

‘\’ The corresponding lines differ, and only the first line is incomplete.

‘/’ The corresponding lines differ, and only the second line is incomplete.

Normally, an output line is incomplete if and only if the lines that it contains are incomplete;
See Chapter 16 [Incomplete Lines], page 81. However, when an output line represents two differing
lines, one might be incomplete while the other is not. In this case, the output line is complete, but
its the gutter is marked ‘\’ if the first line is incomplete, ‘/’ if the second line is.

Side by side format is sometimes easiest to read, but it has limitations. It generates much
wider output than usual, and truncates lines that are too long to fit. Also, it relies on lining up
output more heavily than usual, so its output looks particularly bad if you use varying width fonts,
nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side differences. See Chapter 8
[Interactive Merging], page 47, for more information on merging files.

2.5 Controlling Side by Side Format

The ‘-y’ or ‘--side-by-side’ option selects side by side format. Because side by side output
lines contain two input lines, they are wider than usual. They are normally 130 columns, which
can fit onto a traditional printer line. You can set the length of output lines with the ‘-W columns’
or ‘--width=columns’ option. The output line is split into two halves of equal length, separated
by a small gutter to mark differences; the right half is aligned to a tab stop so that tabs line up.
Input lines that are too long to fit in half of an output line are truncated for output.

The ‘--left-column’ option prints only the left column of two common lines. The ‘--suppress-common-lines’
option suppresses common lines entirely.

Chapter 2: diff Output Formats 19

2.5.1 An Example of Side by Side Format

Here is the output of the command ‘diff -y -W 72 lao tzu’ (see Section 2.1 [Sample diff Input],
page 9, for the complete contents of the two files).

The Way that can be told of is n <
The name that can be named is no <
The Nameless is the origin of He The Nameless is the origin of He
The Named is the mother of all t | The named is the mother of all t

>
Therefore let there always be no Therefore let there always be no

so we may see their subtlety, so we may see their subtlety,
And let there always be being, And let there always be being,

so we may see their outcome. so we may see their outcome.
The two are the same, The two are the same,
But after they are produced, But after they are produced,

they have different names. they have different names.
> They both may be called deep and
> Deeper and more profound,
> The door of all subtleties!

2.6 Making Edit Scripts

Several output modes produce command scripts for editing from-file to produce to-file.

2.6.1 ed Scripts

diff can produce commands that direct the ed text editor to change the first file into the second
file. Long ago, this was the only output mode that was suitable for editing one file into another
automatically; today, with patch, it is almost obsolete. Use the ‘-e’ or ‘--ed’ option to select this
output format.

Like the normal format (see Section 2.2 [Normal], page 10), this output format does not show
any context; unlike the normal format, it does not include the information necessary to apply the
diff in reverse (to produce the first file if all you have is the second file and the diff).

If the file ‘d’ contains the output of ‘diff -e old new’, then the command ‘(cat d && echo w)

| ed - old’ edits ‘old’ to make it a copy of ‘new’. More generally, if ‘d1’, ‘d2’, . . ., ‘dN’ contain the

20 Comparing and Merging Files

outputs of ‘diff -e old new1’, ‘diff -e new1 new2’, . . ., ‘diff -e newN-1 newN’, respectively, then
the command ‘(cat d1 d2 . . . dN && echo w) | ed - old’ edits ‘old’ to make it a copy of ‘newN’.

2.6.1.1 Detailed Description of ed Format

The ed output format consists of one or more hunks of differences. The changes closest to the
ends of the files come first so that commands that change the number of lines do not affect how ed

interprets line numbers in succeeding commands. ed format hunks look like this:

change-command
to-file-line
to-file-line. . .
.

Because ed uses a single period on a line to indicate the end of input, GNU diff protects lines
of changes that contain a single period on a line by writing two periods instead, then writing a
subsequent ed command to change the two periods into one. The ed format cannot represent an
incomplete line, so if the second file ends in a changed incomplete line, diff reports an error and
then pretends that a newline was appended.

There are three types of change commands. Each consists of a line number or comma-separated
range of lines in the first file and a single character indicating the kind of change to make. All line
numbers are the original line numbers in the file. The types of change commands are:

‘la’ Add text from the second file after line l in the first file. For example, ‘8a’ means to
add the following lines after line 8 of file 1.

‘rc’ Replace the lines in range r in the first file with the following lines. Like a combined
add and delete, but more compact. For example, ‘5,7c’ means change lines 5–7 of file
1 to read as the text file 2.

‘rd’ Delete the lines in range r from the first file. For example, ‘5,7d’ means delete lines
5–7 of file 1.

2.6.1.2 Example ed Script

Here is the output of ‘diff -e lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files):

Chapter 2: diff Output Formats 21

11a
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
.
4c
The named is the mother of all things.

.
1,2d

2.6.2 Forward ed Scripts

diff can produce output that is like an ed script, but with hunks in forward (front to back)
order. The format of the commands is also changed slightly: command characters precede the lines
they modify, spaces separate line numbers in ranges, and no attempt is made to disambiguate hunk
lines consisting of a single period. Like ed format, forward ed format cannot represent incomplete
lines.

Forward ed format is not very useful, because neither ed nor patch can apply diffs in this format.
It exists mainly for compatibility with older versions of diff. Use the ‘-f’ or ‘--forward-ed’ option
to select it.

2.6.3 RCS Scripts

The RCS output format is designed specifically for use by the Revision Control System, which
is a set of free programs used for organizing different versions and systems of files. Use the ‘-n’
or ‘--rcs’ option to select this output format. It is like the forward ed format (see Section 2.6.2
[Forward ed], page 21), but it can represent arbitrary changes to the contents of a file because it
avoids the forward ed format’s problems with lines consisting of a single period and with incomplete
lines. Instead of ending text sections with a line consisting of a single period, each command specifies
the number of lines it affects; a combination of the ‘a’ and ‘d’ commands are used instead of ‘c’.
Also, if the second file ends in a changed incomplete line, then the output also ends in an incomplete
line.

Here is the output of ‘diff -n lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files):

d1 2

22 Comparing and Merging Files

d4 1
a4 2
The named is the mother of all things.

a11 3
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

2.7 Merging Files with If-then-else

You can use diff to merge two files of C source code. The output of diff in this format contains
all the lines of both files. Lines common to both files are output just once; the differing parts are
separated by the C preprocessor directives #ifdef name or #ifndef name, #else, and #endif.
When compiling the output, you select which version to use by either defining or leaving undefined
the macro name.

To merge two files, use diff with the ‘-D name’ or ‘--ifdef=name’ option. The argument name

is the C preprocessor identifier to use in the #ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid (-1, &s, 0) and then merge
the old and new files with the ‘--ifdef=HAVE_WAITPID’ option, then the affected part of your code
might look like this:

do {
#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)
#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)
#endif /* HAVE_WAITPID */

return w;
} while (w != child);

You can specify formats for languages other than C by using line group formats and line formats,
as described in the next sections.

Chapter 2: diff Output Formats 23

2.7.1 Line Group Formats

Line group formats let you specify formats suitable for many applications that allow if-then-
else input, including programming languages and text formatting languages. A line group format
specifies the output format for a contiguous group of similar lines.

For example, the following command compares the TeX files ‘old’ and ‘new’, and outputs a
merged file in which old regions are surrounded by ‘\begin{em}’-‘\end{em}’ lines, and new regions
are surrounded by ‘\begin{bf}’-‘\end{bf}’ lines.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

old new

The following command is equivalent to the above example, but it is a little more verbose,
because it spells out the default line group formats.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

--unchanged-group-format=’%=’ \
--changed-group-format=’\begin{em}

%<\end{em}
\begin{bf}
%>\end{bf}
’ \

old new

Here is a more advanced example, which outputs a diff listing with headers containing line
numbers in a “plain English” style.

diff \
--unchanged-group-format=’’ \
--old-group-format=’-------- %dn line%(n=1?:s) deleted at %df:

24 Comparing and Merging Files

%<’ \
--new-group-format=’-------- %dN line%(N=1?:s) added after %de:

%>’ \
--changed-group-format=’-------- %dn line%(n=1?:s) changed at %df:

%<-------- to:
%>’ \

old new

To specify a line group format, use diff with one of the options listed below. You can specify
up to four line group formats, one for each kind of line group. You should quote format, because
it typically contains shell metacharacters.

‘--old-group-format=format’
These line groups are hunks containing only lines from the first file. The default old
group format is the same as the changed group format if it is specified; otherwise it is
a format that outputs the line group as-is.

‘--new-group-format=format’
These line groups are hunks containing only lines from the second file. The default new
group format is same as the the changed group format if it is specified; otherwise it is
a format that outputs the line group as-is.

‘--changed-group-format=format’
These line groups are hunks containing lines from both files. The default changed group
format is the concatenation of the old and new group formats.

‘--unchanged-group-format=format’
These line groups contain lines common to both files. The default unchanged group
format is a format that outputs the line group as-is.

In a line group format, ordinary characters represent themselves; conversion specifications start
with ‘%’ and have one of the following forms.

‘%<’ stands for the lines from the first file, including the trailing newline. Each line is
formatted according to the old line format (see Section 2.7.2 [Line Formats], page 25).

‘%>’ stands for the lines from the second file, including the trailing newline. Each line is
formatted according to the new line format.

‘%=’ stands for the lines common to both files, including the trailing newline. Each line is
formatted according to the unchanged line format.

‘%%’ stands for ‘%’.

Chapter 2: diff Output Formats 25

‘%c’C’’ where C is a single character, stands for C. C may not be a backslash or an apostrophe.
For example, ‘%c’:’’ stands for a colon, even inside the then-part of an if-then-else
format, which a colon would normally terminate.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code
O. For example, ‘%c’\0’’ stands for a null character.

‘Fn’ where F is a printf conversion specification and n is one of the following letters, stands
for n’s value formatted with F.

‘e’ The line number of the line just before the group in the old file.

‘f’ The line number of the first line in the group in the old file; equals e + 1.

‘l’ The line number of the last line in the group in the old file.

‘m’ The line number of the line just after the group in the old file; equals l + 1.

‘n’ The number of lines in the group in the old file; equals l - f + 1.

‘E, F, L, M, N’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘%o’, ‘%x’, or ‘%X’, specifying decimal,
octal, lower case hexadecimal, or upper case hexadecimal output respectively. After the
‘%’ the following options can appear in sequence: a ‘-’ specifying left-justification; an
integer specifying the minimum field width; and a period followed by an optional integer
specifying the minimum number of digits. For example, ‘%5dN’ prints the number of
new lines in the group in a field of width 5 characters, using the printf format "%5d".

‘(A=B?T:E)’
If A equals B then T else E. A and B are each either a decimal constant or a single
letter interpreted as above. This format spec is equivalent to T if A’s value equals B’s;
otherwise it is equivalent to E.

For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent to ‘no lines’ if N (the
number of lines in the group in the the new file) is 0, to ‘1 line’ if N is 1, and to ‘%dN
lines’ otherwise.

2.7.2 Line Formats

Line formats control how each line taken from an input file is output as part of a line group in
if-then-else format.

For example, the following command outputs text with a one-column change indicator to the
left of the text. The first column of output is ‘-’ for deleted lines, ‘|’ for added lines, and a space
for unchanged lines. The formats contain newline characters where newlines are desired on output.

26 Comparing and Merging Files

diff \
--old-line-format=’-%l

’ \
--new-line-format=’|%l

’ \
--unchanged-line-format=’ %l

’ \
old new

To specify a line format, use one of the following options. You should quote format, since it
often contains shell metacharacters.

‘--old-line-format=format’
formats lines just from the first file.

‘--new-line-format=format’
formats lines just from the second file.

‘--unchanged-line-format=format’
formats lines common to both files.

‘--line-format=format’
formats all lines; in effect, it sets all three above options simultaneously.

In a line format, ordinary characters represent themselves; conversion specifications start with
‘%’ and have one of the following forms.

‘%l’ stands for the the contents of the line, not counting its trailing newline (if any). This
format ignores whether the line is incomplete; See Chapter 16 [Incomplete Lines],
page 81.

‘%L’ stands for the the contents of the line, including its trailing newline (if any). If a line
is incomplete, this format preserves its incompleteness.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a backslash or an apostrophe.
For example, ‘%c’:’’ stands for a colon.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the character with octal code
O. For example, ‘%c’\0’’ stands for a null character.

‘Fn’ where F is a printf conversion specification, stands for the line number formatted
with F. For example, ‘%.5dn’ prints the line number using the printf format "%.5d".
See Section 2.7.1 [Line Group Formats], page 23, for more about printf conversion
specifications.

Chapter 2: diff Output Formats 27

The default line format is ‘%l’ followed by a newline character.

If the input contains tab characters and it is important that they line up on output, you should
ensure that ‘%l’ or ‘%L’ in a line format is just after a tab stop (e.g. by preceding ‘%l’ or ‘%L’ with
a tab character), or you should use the ‘-t’ or ‘--expand-tabs’ option.

Taken together, the line and line group formats let you specify many different formats. For
example, the following command uses a format similar to diff’s normal format. You can tailor
this command to get fine control over diff’s output.

diff \
--old-line-format=’< %l

’ \
--new-line-format=’> %l

’ \
--old-group-format=’%df%(f=l?:,%dl)d%dE

%<’ \
--new-group-format=’%dea%dF%(F=L?:,%dL)

%>’ \
--changed-group-format=’%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---
%>’ \

--unchanged-group-format=’’ \
old new

2.7.3 Detailed Description of If-then-else Format

For lines common to both files, diff uses the unchanged line group format. For each hunk of
differences in the merged output format, if the hunk contains only lines from the first file, diff
uses the old line group format; if the hunk contains only lines from the second file, diff uses the
new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format of lines from the first file,
lines from the second file, and lines common to both files, respectively.

The option ‘--ifdef=name’ is equivalent to the following sequence of options using shell syntax:

--old-group-format=’#ifndef name
%<#endif /* not name */
’ \
--new-group-format=’#ifdef name

28 Comparing and Merging Files

%>#endif /* name */
’ \
--unchanged-group-format=’%=’ \
--changed-group-format=’#ifndef name
%<#else /* name */
%>#endif /* name */
’

You should carefully check the diff output for proper nesting. For example, when using the
the ‘-D name’ or ‘--ifdef=name’ option, you should check that if the differing lines contain any
of the C preprocessor directives ‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or ‘#endif’, they are nested
properly and match. If they don’t, you must make corrections manually. It is a good idea to
carefully check the resulting code anyway to make sure that it really does what you want it to;
depending on how the input files were produced, the output might contain duplicate or otherwise
incorrect code.

The patch ‘-D name’ option behaves just like the diff ‘-D name’ option, except it operates on
a file and a diff to produce a merged file; See Section 14.4 [patch Options], page 74.

2.7.4 An Example of If-then-else Format

Here is the output of ‘diff -DTWO lao tzu’ (see Section 2.1 [Sample diff Input], page 9, for the
complete contents of the two files):

#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* not TWO */
The Nameless is the origin of Heaven and Earth;
#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,

they have different names.
#ifdef TWO

Chapter 2: diff Output Formats 29

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

30 Comparing and Merging Files

Chapter 3: Comparing Directories 31

3 Comparing Directories

You can use diff to compare some or all of the files in two directory trees. When both file
name arguments to diff are directories, it compares each file that is contained in both directories,
examining file names in alphabetical order. Normally diff is silent about pairs of files that contain
no differences, but if you use the ‘-s’ or ‘--report-identical-files’ option, it reports pairs of
identical files. Normally diff reports subdirectories common to both directories without comparing
subdirectories’ files, but if you use the ‘-r’ or ‘--recursive’ option, it compares every corresponding
pair of files in the directory trees, as many levels deep as they go.

For file names that are in only one of the directories, diff normally does not show the contents
of the file that exists; it reports only that the file exists in that directory and not in the other.
You can make diff act as though the file existed but was empty in the other directory, so that it
outputs the entire contents of the file that actually exists. (It is output as either an insertion or a
deletion, depending on whether it is in the first or the second directory given.) To do this, use the
‘-N’ or ‘--new-file’ option.

If the older directory contains one or more large files that are not in the newer directory, you
can make the patch smaller by using the ‘-P’ or ‘--unidirectional-new-file’ option instead of
‘-N’. This option is like ‘-N’ except that it only inserts the contents of files that appear in the
second directory but not the first (that is, files that were added). At the top of the patch, write
instructions for the user applying the patch to remove the files that were deleted before applying
the patch. See Chapter 10 [Making Patches], page 55, for more discussion of making patches for
distribution.

To ignore some files while comparing directories, use the ‘-x pattern’ or ‘--exclude=pattern’
option. This option ignores any files or subdirectories whose base names match the shell pattern
pattern. Unlike in the shell, a period at the start of the base of a file name matches a wildcard at
the start of a pattern. You should enclose pattern in quotes so that the shell does not expand it.
For example, the option ‘-x ’*.[ao]’’ ignores any file whose name ends with ‘.a’ or ‘.o’.

This option accumulates if you specify it more than once. For example, using the options ‘-x
’RCS’ -x ’*,v’’ ignores any file or subdirectory whose base name is ‘RCS’ or ends with ‘,v’.

If you need to give this option many times, you can instead put the patterns in a file, one pattern
per line, and use the ‘-X file’ or ‘--exclude-from=file’ option.

If you have been comparing two directories and stopped partway through, later you might want
to continue where you left off. You can do this by using the ‘-S file’ or ‘--starting-file=file’

32 Comparing and Merging Files

option. This compares only the file file and all alphabetically later files in the topmost directory
level.

Chapter 4: Making diff Output Prettier 33

4 Making diffOutput Prettier

diff provides several ways to adjust the appearance of its output. These adjustments can be
applied to any output format.

4.1 Preserving Tabstop Alignment

The lines of text in some of the diff output formats are preceded by one or two characters that
indicate whether the text is inserted, deleted, or changed. The addition of those characters can
cause tabs to move to the next tabstop, throwing off the alignment of columns in the line. GNU
diff provides two ways to make tab-aligned columns line up correctly.

The first way is to have diff convert all tabs into the correct number of spaces before outputting
them; select this method with the ‘-t’ or ‘--expand-tabs’ option. diff assumes that tabstops
are set every 8 columns. To use this form of output with patch, you must give patch the ‘-l’
or ‘--ignore-white-space’ option (see Section 9.2.1 [Changed White Space], page 50, for more
information).

The other method for making tabs line up correctly is to add a tab character instead of a
space after the indicator character at the beginning of the line. This ensures that all following tab
characters are in the same position relative to tabstops that they were in the original files, so that
the output is aligned correctly. Its disadvantage is that it can make long lines too long to fit on
one line of the screen or the paper. It also does not work with the unified output format, which
does not have a space character after the change type indicator character. Select this method with
the ‘-T’ or ‘--initial-tab’ option.

4.2 Paginating diff Output

It can be convenient to have long output page-numbered and time-stamped. The ‘-l’ and
‘--paginate’ options do this by sending the diff output through the pr program. Here is what
the page header might look like for ‘diff -lc lao tzu’:

Mar 11 13:37 1991 diff -lc lao tzu Page 1

34 Comparing and Merging Files

Chapter 5: diff Performance Tradeoffs 35

5 diffPerformance Tradeoffs

GNU diff runs quite efficiently; however, in some circumstances you can cause it to run faster
or produce a more compact set of changes. There are two ways that you can affect the performance
of GNU diff by changing the way it compares files.

Performance has more than one dimension. These options improve one aspect of performance
at the cost of another, or they improve performance in some cases while hurting it in others.

The way that GNU diff determines which lines have changed always comes up with a near-
minimal set of differences. Usually it is good enough for practical purposes. If the diff output is
large, you might want diff to use a modified algorithm that sometimes produces a smaller set of
differences. The ‘-d’ or ‘--minimal’ option does this; however, it can also cause diff to run more
slowly than usual, so it is not the default behavior.

When the files you are comparing are large and have small groups of changes scattered through-
out them, you can use the ‘-H’ or ‘--speed-large-files’ option to make a different modification
to the algorithm that diff uses. If the input files have a constant small density of changes, this
option speeds up the comparisons without changing the output. If not, diff might produce a larger
set of differences; however, the output will still be correct.

Normally diff discards the prefix and suffix that is common to both files before it attempts
to find a minimal set of differences. This makes diff run faster, but occasionally it may produce
non-minimal output. The ‘--horizon-lines=lines’ option prevents diff from discarding the last
lines lines of the prefix and the first lines lines of the suffix. This gives diff further opportunities
to find a minimal output.

36 Comparing and Merging Files

Chapter 6: Comparing Three Files 37

6 Comparing Three Files

Use the program diff3 to compare three files and show any differences among them. (diff3
can also merge files; see Chapter 7 [diff3 Merging], page 41).

The “normal” diff3 output format shows each hunk of differences without surrounding context.
Hunks are labeled depending on whether they are two-way or three-way, and lines are annotated
by their location in the input files.

See Chapter 13 [Invoking diff3], page 67, for more information on how to run diff3.

6.1 A Third Sample Input File

Here is a third sample file that will be used in examples to illustrate the output of diff3 and
how various options can change it. The first two files are the same that we used for diff (see
Section 2.1 [Sample diff Input], page 9). This is the third sample file, called ‘tao’:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,

they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

6.2 Detailed Description of diff3 Normal Format

Each hunk begins with a line marked ‘====’. Three-way hunks have plain ‘====’ lines, and
two-way hunks have ‘1’, ‘2’, or ‘3’ appended to specify which of the three input files differ in that
hunk. The hunks contain copies of two or three sets of input lines each preceded by one or two
commands identifying where the lines came from.

38 Comparing and Merging Files

Normally, two spaces precede each copy of an input line to distinguish it from the commands.
But with the ‘-T’ or ‘--initial-tab’ option, diff3 uses a tab instead of two spaces; this lines up
tabs correctly. See Section 4.1 [Tabs], page 33, for more information.

Commands take the following forms:

‘file:la’ This hunk appears after line l of file file, and contains no lines in that file. To edit this
file to yield the other files, one must append hunk lines taken from the other files. For
example, ‘1:11a’ means that the hunk follows line 11 in the first file and contains no
lines from that file.

‘file:rc’ This hunk contains the lines in the range r of file file. The range r is a comma-separated
pair of line numbers, or just one number if the range is a singleton. To edit this file to
yield the other files, one must change the specified lines to be the lines taken from the
other files. For example, ‘2:11,13c’ means that the hunk contains lines 11 through 13
from the second file.

If the last line in a set of input lines is incomplete (see Chapter 16 [Incomplete Lines], page 81),
it is distinguished on output from a full line by a following line that starts with ‘\’.

6.3 diff3 Hunks

Groups of lines that differ in two or three of the input files are called diff3 hunks, by analogy
with diff hunks (see Section 1.1 [Hunks], page 3). If all three input files differ in a diff3 hunk,
the hunk is called a three-way hunk; if just two input files differ, it is a two-way hunk.

As with diff, several solutions are possible. When comparing the files ‘A’, ‘B’, and ‘C’, diff3
normally finds diff3 hunks by merging the two-way hunks output by the two commands ‘diff A

B’ and ‘diff A C’. This does not necessarily minimize the size of the output, but exceptions should
be rare.

For example, suppose ‘F’ contains the three lines ‘a’, ‘b’, ‘f’, ‘G’ contains the lines ‘g’, ‘b’, ‘g’,
and ‘H’ contains the lines ‘a’, ‘b’, ‘h’. ‘diff3 F G H’ might output the following:

====2
1:1c
3:1c

a
2:1c

Chapter 6: Comparing Three Files 39

g
====
1:3c
f

2:3c
g

3:3c
h

because it found a two-way hunk containing ‘a’ in the first and third files and ‘g’ in the second file,
then the single line ‘b’ common to all three files, then a three-way hunk containing the last line of
each file.

6.4 An Example of diff3 Normal Format

Here is the output of the command ‘diff3 lao tzu tao’ (see Section 6.1 [Sample diff3 Input],
page 37, for the complete contents of the files). Notice that it shows only the lines that are different
among the three files.

====2
1:1,2c
3:1,2c
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.

2:0a
====1
1:4c

The Named is the mother of all things.
2:2,3c
3:4,5c

The named is the mother of all things.

====3
1:8c
2:7c

so we may see their outcome.
3:9c

so we may see their result.
====
1:11a
2:11,13c
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

40 Comparing and Merging Files

3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

Chapter 7: Merging From a Common Ancestor 41

7 Merging From a Common Ancestor

When two people have made changes to copies of the same file, diff3 can produce a merged
output that contains both sets of changes together with warnings about conflicts.

One might imagine programs with names like diff4 and diff5 to compare more than three
files simultaneously, but in practice the need rarely arises. You can use diff3 to merge three or
more sets of changes to a file by merging two change sets at a time.

diff3 can incorporate changes from two modified versions into a common preceding version.
This lets you merge the sets of changes represented by the two newer files. Specify the common
ancestor version as the second argument and the two newer versions as the first and third arguments,
like this:

diff3 mine older yours

You can remember the order of the arguments by noting that they are in alphabetical order.

You can think of this as subtracting older from yours and adding the result to mine, or as
merging into mine the changes that would turn older into yours. This merging is well-defined as
long as mine and older match in the neighborhood of each such change. This fails to be true when
all three input files differ or when only older differs; we call this a conflict. When all three input
files differ, we call the conflict an overlap.

diff3 gives you several ways to handle overlaps and conflicts. You can omit overlaps or conflicts,
or select only overlaps, or mark conflicts with special ‘<<<<<<<’ and ‘>>>>>>>’ lines.

diff3 can output the merge results as an ed script that that can be applied to the first file to
yield the merged output. However, it is usually better to have diff3 generate the merged output
directly; this bypasses some problems with ed.

7.1 Selecting Which Changes to Incorporate

You can select all unmerged changes from older to yours for merging into mine with the
‘-e’ or ‘--ed’ option. You can select only the nonoverlapping unmerged changes with ‘-3’ or
‘--easy-only’, and you can select only the overlapping changes with ‘-x’ or ‘--overlap-only’.

42 Comparing and Merging Files

The ‘-e’, ‘-3’ and ‘-x’ options select only unmerged changes, i.e. changes where mine and yours

differ; they ignore changes from older to yours where mine and yours are identical, because they
assume that such changes have already been merged. If this assumption is not a safe one, you can
use the ‘-A’ or ‘--show-all’ option (see Section 7.2 [Marking Conflicts], page 42).

Here is the output of the command diff3 with each of these three options (see Section 6.1
[Sample diff3 Input], page 37, for the complete contents of the files). Notice that ‘-e’ outputs the
union of the disjoint sets of changes output by ‘-3’ and ‘-x’.

Output of ‘diff3 -e lao tzu tao’:

11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c

so we may see their result.
.

Output of ‘diff3 -3 lao tzu tao’:

8c
so we may see their result.

.

Output of ‘diff3 -x lao tzu tao’:

11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

7.2 Marking Conflicts

diff3 can mark conflicts in the merged output by bracketing them with special marker lines.
A conflict that comes from two files A and B is marked as follows:

<<<<<<< A
lines from A
=======

Chapter 7: Merging From a Common Ancestor 43

lines from B
>>>>>>> B

A conflict that comes from three files A, B and C is marked as follows:

<<<<<<< A
lines from A
||||||| B
lines from B
=======
lines from C
>>>>>>> C

The ‘-A’ or ‘--show-all’ option acts like the ‘-e’ option, except that it brackets conflicts, and
it outputs all changes from older to yours, not just the unmerged changes. Thus, given the sample
input files (see Section 6.1 [Sample diff3 Input], page 37), ‘diff3 -A lao tzu tao’ puts brackets
around the conflict where only ‘tzu’ differs:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:

<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The ‘-E’ or ‘--show-overlap’ option outputs less information than the ‘-A’ or ‘--show-all’
option, because it outputs only unmerged changes, and it never outputs the contents of the second
file. Thus the ‘-E’ option acts like the ‘-e’ option, except that it brackets the first and third
files from three-way overlapping changes. Similarly, ‘-X’ acts like ‘-x’, except it brackets all its
(necessarily overlapping) changes. For example, for the three-way overlapping change above, the
‘-E’ and ‘-X’ options output the following:

44 Comparing and Merging Files

<<<<<<< lao
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative names, you can use the ‘-L
label’ or ‘--label=label’ option to show alternate names in the ‘<<<<<<<’, ‘|||||||’ and ‘>>>>>>>’
brackets. This option can be given up to three times, once for each input file. Thus ‘diff3 -A -L

X -L Y -L Z A B C’ acts like ‘diff3 -A A B C’, except that the output looks like it came from files
named ‘X’, ‘Y’ and ‘Z’ rather than from files named ‘A’, ‘B’ and ‘C’.

7.3 Generating the Merged Output Directly

With the ‘-m’ or ‘--merge’ option, diff3 outputs the merged file directly. This is more efficient
than using ed to generate it, and works even with non-text files that ed would reject. If you specify
‘-m’ without an ed script option, ‘-A’ (‘--show-all’) is assumed.

For example, the command ‘diff3 -m lao tzu tao’ (see Section 6.1 [Sample diff3 Input], page 37
for a copy of the input files) would output the following:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,

they have different names.
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

Chapter 7: Merging From a Common Ancestor 45

>>>>>>> tao

7.4 How diff3 Merges Incomplete Lines

With ‘-m’, incomplete lines (see Chapter 16 [Incomplete Lines], page 81) are simply copied to the
output as they are found; if the merged output ends in an conflict and one of the input files ends in
an incomplete line, succeeding ‘|||||||’, ‘=======’ or ‘>>>>>>>’ brackets appear somewhere other
than the start of a line because they are appended to the incomplete line.

Without ‘-m’, if an ed script option is specified and an incomplete line is found, diff3 generates
a warning and acts as if a newline had been present.

7.5 Saving the Changed File

Traditional Unix diff3 generates an ed script without the trailing ‘w’ and and ‘q’ commands
that save the changes. System V diff3 generates these extra commands. GNU diff3 normally
behaves like traditional Unix diff3, but with the ‘-i’ option it behaves like System V diff3 and
appends the ‘w’ and ‘q’ commands.

The ‘-i’ option requires one of the ed script options ‘-AeExX3’, and is incompatible with the
merged output option ‘-m’.

46 Comparing and Merging Files

Chapter 8: Interactive Merging with sdiff 47

8 Interactive Merging with sdiff

With sdiff, you can merge two files interactively based on a side-by-side ‘-y’ format comparison
(see Section 2.4 [Side by Side], page 17). Use ‘-o file’ or ‘--output=file’ to specify where to put the
merged text. See Chapter 15 [Invoking sdiff], page 77, for more details on the options to sdiff.

Another way to merge files interactively is to use the Emacs Lisp package emerge. See section
“emerge” in The GNU Emacs Manual, for more information.

8.1 Specifying diff Options to sdiff

The following sdiff options have the same meaning as for diff. See Section 12.1 [diff Options],
page 59, for the use of these options.

-a -b -d -i -t -v
-B -H -I regexp

--ignore-blank-lines --ignore-case
--ignore-matching-lines=regexp --ignore-space-change
--left-column --minimal --speed-large-files
--suppress-common-lines --expand-tabs
--text --version --width=columns

For historical reasons, sdiff has alternate names for some options. The ‘-l’ option is equivalent
to the ‘--left-column’ option, and similarly ‘-s’ is equivalent to ‘--suppress-common-lines’.
The meaning of the sdiff ‘-w’ and ‘-W’ options is interchanged from that of diff: with sdiff,
‘-w columns’ is equivalent to ‘--width=columns’, and ‘-W’ is equivalent to ‘--ignore-all-space’.
sdiff without the ‘-o’ option is equivalent to diff with the ‘-y’ or ‘--side-by-side’ option (see
Section 2.4 [Side by Side], page 17).

8.2 Merge Commands

Groups of common lines, with a blank gutter, are copied from the first file to the output. After
each group of differing lines, sdiff prompts with ‘%’ and pauses, waiting for one of the following
commands. Follow each command with RET.

48 Comparing and Merging Files

‘e’ Discard both versions. Invoke a text editor on an empty temporary file, then copy the
resulting file to the output.

‘eb’ Concatenate the two versions, edit the result in a temporary file, then copy the edited
result to the output.

‘el’ Edit a copy of the left version, then copy the result to the output.

‘er’ Edit a copy of the right version, then copy the result to the output.

‘l’ Copy the left version to the output.

‘q’ Quit.

‘r’ Copy the right version to the output.

‘s’ Silently copy common lines.

‘v’ Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment variable if it is set. The default
is system-dependent.

Chapter 9: Merging with patch 49

9 Merging with patch

patch takes comparison output produced by diff and applies the differences to a copy of the
original file, producing a patched version. With patch, you can distribute just the changes to a set
of files instead of distributing the entire file set; your correspondents can apply patch to update
their copy of the files with your changes. patch automatically determines the diff format, skips any
leading or trailing headers, and uses the headers to determine which file to patch. This lets your
correspondents feed an article or message containing a difference listing directly to patch.

patch detects and warns about common problems like forward patches. It saves the original
version of the files it patches, and saves any patches that it could not apply. It can also maintain
a patchlevel.h file to ensures that your correspondents apply diffs in the proper order.

patch accepts a series of diffs in its standard input, usually separated by headers that specify
which file to patch. It applies diff hunks (see Section 1.1 [Hunks], page 3) one by one. If a hunk
does not exactly match the original file, patch uses heuristics to try to patch the file as well as it
can. If no approximate match can be found, patch rejects the hunk and skips to the next hunk.
patch normally replaces each file f with its new version, saving the original file in ‘f.orig’, and
putting reject hunks (if any) into ‘f.rej’.

See Chapter 14 [Invoking patch], page 71, for detailed information on the options to patch.
See Section 14.2 [Backups], page 72, for more information on how patch names backup files. See
Section 14.3 [Rejects], page 73, for more information on where patch puts reject hunks.

9.1 Selecting the patch Input Format

patch normally determines which diff format the patch file uses by examining its contents.
For patch files that contain particularly confusing leading text, you might need to use one of the
following options to force patch to interpret the patch file as a certain format of diff. The output
formats listed here are the only ones that patch can understand.

‘-c’
‘--context’

context diff.

‘-e’
‘--ed’ ed script.

50 Comparing and Merging Files

‘-n’
‘--normal’

normal diff.

‘-u’
‘--unified’

unified diff.

9.2 Applying Imperfect Patches

patch tries to skip any leading text in the patch file, apply the diff, and then skip any trailing
text. Thus you can feed a news article or mail message directly to patch, and it should work. If
the entire diff is indented by a constant amount of white space, patch automatically ignores the
indentation.

However, certain other types of imperfect input require user intervention.

9.2.1 Applying Patches with Changed White Space

Sometimes mailers, editors, or other programs change spaces into tabs, or vice versa. If this
happens to a patch file or an input file, the files might look the same, but patch will not be able
to match them properly. If this problem occurs, use the ‘-l’ or ‘--ignore-white-space’ option,
which makes patch compare white space loosely so that any sequence of white space in the patch
file matches any sequence of white space in the input files. Non-white-space characters must still
match exactly. Each line of the context must still match a line in the input file.

9.2.2 Applying Reversed Patches

Sometimes people run diff with the new file first instead of second. This creates a diff that is
“reversed”. To apply such patches, give patch the ‘-R’ or ‘--reverse’ option. patch then attempts
to swap each hunk around before applying it. Rejects come out in the swapped format. The ‘-R’
option does not work with ed scripts because there is too little information in them to reconstruct
the reverse operation.

Often patch can guess that the patch is reversed. If the first hunk of a patch fails, patch reverses
the hunk to see if it can apply it that way. If it can, patch asks you if you want to have the ‘-R’

Chapter 9: Merging with patch 51

option set; if it can’t, patch continues to apply the patch normally. This method cannot detect a
reversed patch if it is a normal diff and the first command is an append (which should have been a
delete) since appends always succeed, because a null context matches anywhere. But most patches
add or change lines rather than delete them, so most reversed normal diffs begin with a delete,
which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks it is a reversed patch and offers
to un-apply the patch. This could be construed as a feature. If you did this inadvertently and
you don’t want to un-apply the patch, just answer ‘n’ to this offer and to the subsequent “apply
anyway” question—or type C-c to kill the patch process.

9.2.3 Helping patch Find Inexact Matches

For context diffs, and to a lesser extent normal diffs, patch can detect when the line numbers
mentioned in the patch are incorrect, and it attempts to find the correct place to apply each hunk
of the patch. As a first guess, it takes the line number mentioned in the hunk, plus or minus any
offset used in applying the previous hunk. If that is not the correct place, patch scans both forward
and backward for a set of lines matching the context given in the hunk.

First patch looks for a place where all lines of the context match. If it cannot find such a
place, and it is reading a context or unified diff, and the maximum fuzz factor is set to 1 or more,
then patch makes another scan, ignoring the first and last line of context. If that fails, and the
maximum fuzz factor is set to 2 or more, it makes another scan, ignoring the first two and last two
lines of context are ignored. It continues similarly if the maximum fuzz factor is larger.

The ‘-F lines’ or ‘--fuzz=lines’ option sets the maximum fuzz factor to lines. This option only
applies to context and unified diffs; it ignores up to lines lines while looking for the place to install
a hunk. Note that a larger fuzz factor increases the odds of making a faulty patch. The default
fuzz factor is 2; it may not be set to more than the number of lines of context in the diff, ordinarily
3.

If patch cannot find a place to install a hunk of the patch, it writes the hunk out to a reject
file (see Section 14.3 [Rejects], page 73, for information on how reject files are named). It writes
out rejected hunks in context format no matter what form the input patch is in. If the input is
a normal or ed diff, many of the contexts are simply null. The line numbers on the hunks in the
reject file may be different from those in the patch file: they show the approximate location where
patch thinks the failed hunks belong in the new file rather than in the old one.

52 Comparing and Merging Files

As it completes each hunk, patch tells you whether the hunk succeeded or failed, and if it failed,
on which line (in the new file) patch thinks the hunk should go. If this is different from the line
number specified in the diff, it tells you the offset. A single large offset may indicate that patch

installed a hunk in the wrong place. patch also tells you if it used a fuzz factor to make the match,
in which case you should also be slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can only detect wrong line
numbers in a normal diff when it finds a change or delete command. It may have the same problem
with a context diff using a fuzz factor equal to or greater than the number of lines of context shown
in the diff (typically 3). In these cases, you should probably look at a context diff between your
original and patched input files to see if the changes make sense. Compiling without errors is a
pretty good indication that the patch worked, but not a guarantee.

patch usually produces the correct results, even when it must make many guesses. However,
the results are guaranteed only when the patch is applied to an exact copy of the file that the patch
was generated from.

9.3 Removing Empty Files

Sometimes when comparing two directories, the first directory contains a file that the second
directory does not. If you give diff the ‘-N’ or ‘--new-file’ option, it outputs a diff that deletes
the contents of this file. By default, patch leaves an empty file after applying such a diff. The ‘-E’
or ‘--remove-empty-files’ option to patch deletes output files that are empty after applying the
diff.

9.4 Multiple Patches in a File

If the patch file contains more than one patch, patch tries to apply each of them as if they
came from separate patch files. This means that it determines the name of the file to patch for
each patch, and that it examines the leading text before each patch for file names and prerequisite
revision level (see Chapter 10 [Making Patches], page 55, for more on that topic).

For the second and subsequent patches in the patch file, you can give options and another
original file name by separating their argument lists with a ‘+’. However, the argument list for a
second or subsequent patch may not specify a new patch file, since that does not make sense.

Chapter 9: Merging with patch 53

For example, to tell patch to strip the first three slashes from the name of the first patch in the
patch file and none from subsequent patches, and to use ‘code.c’ as the first input file, you can
use:

patch -p3 code.c + -p0 < patchfile

The ‘-S’ or ‘--skip’ option ignores the current patch from the patch file, but continue looking
for the next patch in the file. Thus, to ignore the first and third patches in the patch file, you can
use:

patch -S + + -S + < patch file

9.5 Messages and Questions from patch

patch can produce a variety of messages, especially if it has trouble decoding its input. In a few
situations where it’s not sure how to proceed, patch normally prompts you for more information
from the keyboard. There are options to suppress printing non-fatal messages and stopping for
keyboard input.

The message ‘Hmm...’ indicates that patch is reading text in the patch file, attempting to
determine whether there is a patch in that text, and if so, what kind of patch it is.

You can inhibit all terminal output from patch, unless an error occurs, by using the ‘-s’,
‘--quiet’, or ‘--silent’ option.

There are two ways you can prevent patch from asking you any questions. The ‘-f’ or ‘--force’
option assumes that you know what you are doing. It assumes the following:

• skip patches that do not contain file names in their headers;

• patch files even though they have the wrong version for the ‘Prereq:’ line in the patch;

• assume that patches are not reversed even if they look like they are.

The ‘-t’ or ‘--batch’ option is similar to ‘-f’, in that it suppresses questions, but it makes
somewhat different assumptions:

• skip patches that do not contain file names in their headers (the same as ‘-f’);

• skip patches for which the file has the wrong version for the ‘Prereq:’ line in the patch;

54 Comparing and Merging Files

• assume that patches are reversed if they look like they are.

patch exits with a non-zero status if it creates any reject files. When applying a set of patches
in a loop, you should check the exit status, so you don’t apply a later patch to a partially patched
file.

Chapter 10: Tips for Making Patch Distributions 55

10 Tips for Making Patch Distributions

Here are some things you should keep in mind if you are going to distribute patches for updating
a software package.

Make sure you have specified the file names correctly, either in a context diff header or with an
‘Index:’ line. If you are patching files in a subdirectory, be sure to tell the patch user to specify a
‘-p’ or ‘--strip’ option as needed. Take care to not send out reversed patches, since these make
people wonder whether they have already applied the patch.

To save people from partially applying a patch before other patches that should have gone before
it, you can make the first patch in the patch file update a file with a name like ‘patchlevel.h’ or
‘version.c’, which contains a patch level or version number. If the input file contains the wrong
version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq:’ line before the patch. If the
leading text in the patch file contains a line that starts with ‘Prereq:’, patch takes the next word
from that line (normally a version number) and checks whether the next input file contains that
word, preceded and followed by either white space or a newline. If not, patch prompts you for
confirmation before proceeding. This makes it difficult to accidentally apply patches in the wrong
order.

Since patch does not handle incomplete lines properly, make sure that all the source files in
your program end with a newline whenever you release a version.

To create a patch that changes an older version of a package into a newer version, first make a
copy of the older version in a scratch directory. Typically you do that by unpacking a tar or shar
archive of the older version.

You might be able to reduce the size of the patch by renaming or removing some files before
making the patch. If the older version of the package contains any files that the newer version
does not, or if any files have been renamed between the two versions, make a list of rm and mv

commands for the user to execute in the old version directory before applying the patch. Then run
those commands yourself in the scratch directory.

If there are any files that you don’t need to include in the patch because they can easily be
rebuilt from other files (for example, ‘TAGS’ and output from yacc and makeinfo), replace the
versions in the scratch directory with the newer versions, using rm and ln or cp.

56 Comparing and Merging Files

Now you can create the patch. The de-facto standard diff format for patch distributions is
context format with two lines of context, produced by giving diff the ‘-C 2’ option. Do not use
less than two lines of context, because patch typically needs at least two lines for proper operation.
Give diff the ‘-P’ option in case the newer version of the package contains any files that the older
one does not. Make sure to specify the scratch directory first and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv commands to run before
applying the patch. Then you can remove the scratch directory.

Chapter 11: Invoking cmp 57

11 Invoking cmp

The cmp command compares two files, and if they differ, tells the first byte and line number
where they differ. Its arguments are as follows:

cmp options. . . from-file [to-file]

The file name ‘-’ is always the standard input. cmp also uses the standard input if one file name
is omitted.

An exit status of 0 means no differences were found, 1 means some differences were found, and
2 means trouble.

11.1 Options to cmp

Below is a summary of all of the options that GNU cmp accepts. Most options have two equivalent
names, one of which is a single letter preceded by ‘-’, and the other of which is a long name preceded
by ‘--’. Multiple single letter options (unless they take an argument) can be combined into a single
command line word: ‘-cl’ is equivalent to ‘-c -l’.

‘-c’ Print the differing characters. Display control characters as a ‘^’ followed by a letter of
the alphabet and precede characters that have the high bit set with ‘M-’ (which stands
for “meta”).

‘--ignore-initial=bytes’
Ignore any differences in the the first bytes bytes of the input files. Treat files with
fewer than bytes bytes as if they are empty.

‘-l’ Print the (decimal) offsets and (octal) values of all differing bytes.

‘--print-chars’
Print the differing characters. Display control characters as a ‘^’ followed by a letter of
the alphabet and precede characters that have the high bit set with ‘M-’ (which stands
for “meta”).

‘--quiet’
‘-s’
‘--silent’

Do not print anything; only return an exit status indicating whether the files differ.

58 Comparing and Merging Files

‘--verbose’
Print the (decimal) offsets and (octal) values of all differing bytes.

‘-v’

‘--version’
Output the version number of cmp.

Chapter 12: Invoking diff 59

12 Invoking diff

The format for running the diff command is:

diff options. . . from-file to-file

In the simplest case, diff compares the contents of the two files from-file and to-file. A file
name of ‘-’ stands for text read from the standard input. As a special case, ‘diff - -’ compares a
copy of standard input to itself.

If from-file is a directory and to-file is not, diff compares the file in from-file whose file name
is that of to-file, and vice versa. The non-directory file must not be ‘-’.

If both from-file and to-file are directories, diff compares corresponding files in both directories,
in alphabetical order; this comparison is not recursive unless the ‘-r’ or ‘--recursive’ option is
given. diff never compares the actual contents of a directory as if it were a file. The file that is
fully specified may not be standard input, because standard input is nameless and the notion of
“file with the same name” does not apply.

diff options begin with ‘-’, so normally from-file and to-file may not begin with ‘-’. However,
‘--’ as an argument by itself treats the remaining arguments as file names even if they begin with
‘-’.

An exit status of 0 means no differences were found, 1 means some differences were found, and
2 means trouble.

12.1 Options to diff

Below is a summary of all of the options that GNU diff accepts. Most options have two
equivalent names, one of which is a single letter preceded by ‘-’, and the other of which is a
long name preceded by ‘--’. Multiple single letter options (unless they take an argument) can be
combined into a single command line word: ‘-ac’ is equivalent to ‘-a -c’. Long named options can
be abbreviated to any unique prefix of their name. Brackets ([and]) indicate that an option takes
an optional argument.

‘-lines’ Show lines (an integer) lines of context. This option does not specify an output format
by itself; it has no effect unless it is combined with ‘-c’ (see Section 2.3.1 [Context

60 Comparing and Merging Files

Format], page 12) or ‘-u’ (see Section 2.3.2 [Unified Format], page 14). This option is
obsolete. For proper operation, patch typically needs at least two lines of context.

‘-a’ Treat all files as text and compare them line-by-line, even if they do not seem to be
text. See Section 1.7 [Binary], page 7.

‘-b’ Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],
page 5.

‘--binary’
Read and write data in binary mode. See Section 1.7 [Binary], page 7.

‘--brief’ Report only whether the files differ, not the details of the differences. See Section 1.6
[Brief], page 6.

‘-c’ Use the context output format. See Section 2.3.1 [Context Format], page 12.

‘-C lines’
‘--context[=lines]’

Use the context output format, showing lines (an integer) lines of context, or three if
lines is not given. See Section 2.3.1 [Context Format], page 12. For proper operation,
patch typically needs at least two lines of context.

‘--changed-group-format=format’
Use format to output a line group containing differing lines from both files in if-then-else
format. See Section 2.7.1 [Line Group Formats], page 23.

‘-d’ Change the algorithm perhaps find a smaller set of changes. This makes diff slower
(sometimes much slower). See Chapter 5 [diff Performance], page 35.

‘-D name’ Make merged ‘#ifdef’ format output, conditional on the preprocessor macro name.
See Section 2.7 [If-then-else], page 22.

‘-e’
‘--ed’ Make output that is a valid ed script. See Section 2.6.1 [ed Scripts], page 19.

‘--exclude=pattern’
When comparing directories, ignore files and subdirectories whose basenames match
pattern. See Chapter 3 [Comparing Directories], page 31.

‘--exclude-from=file’
When comparing directories, ignore files and subdirectories whose basenames match
any pattern contained in file. See Chapter 3 [Comparing Directories], page 31.

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See Section 4.1 [Tabs], page 33.

Chapter 12: Invoking diff 61

‘-f’ Make output that looks vaguely like an ed script but has changes in the order they
appear in the file. See Section 2.6.2 [Forward ed], page 21.

‘-F regexp’
In context and unified format, for each hunk of differences, show some of the last
preceding line that matches regexp. See Section 2.3.3.1 [Specified Headings], page 16.

‘--forward-ed’
Make output that looks vaguely like an ed script but has changes in the order they
appear in the file. See Section 2.6.2 [Forward ed], page 21.

‘-h’ This option currently has no effect; it is present for Unix compatibility.

‘-H’ Use heuristics to speed handling of large files that have numerous scattered small
changes. See Chapter 5 [diff Performance], page 35.

‘--horizon-lines=lines’
Do not discard the last lines lines of the common prefix and the first lines lines of the
common suffix. See Chapter 5 [diff Performance], page 35.

‘-i’ Ignore changes in case; consider upper- and lower-case letters equivalent. See Sec-
tion 1.4 [Case Folding], page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match regexp. See Section 1.5
[Specified Folding], page 6.

‘--ifdef=name’
Make merged if-then-else output using name. See Section 2.7 [If-then-else], page 22.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],
page 5.

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4
[Case Folding], page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match regexp. See Section 1.5
[Specified Folding], page 6.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

62 Comparing and Merging Files

‘--initial-tab’
Output a tab rather than a space before the text of a line in normal or context format.
This causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs],
page 33.

‘-l’ Pass the output through pr to paginate it. See Section 4.2 [Pagination], page 33.

‘-L label’ Use label instead of the file name in the context format (see Section 2.3.1 [Context
Format], page 12) and unified format (see Section 2.3.2 [Unified Format], page 14)
headers. See Section 2.6.3 [RCS], page 21.

‘--label=label’
Use label instead of the file name in the context format (see Section 2.3.1 [Context
Format], page 12) and unified format (see Section 2.3.2 [Unified Format], page 14)
headers.

‘--left-column’
Print only the left column of two common lines in side by side format. See Section 2.5
[Side by Side Format], page 18.

‘--line-format=format’
Use format to output all input lines in if-then-else format. See Section 2.7.2 [Line
Formats], page 25.

‘--minimal’
Change the algorithm to perhaps find a smaller set of changes. This makes diff slower
(sometimes much slower). See Chapter 5 [diff Performance], page 35.

‘-n’ Output RCS-format diffs; like ‘-f’ except that each command specifies the number of
lines affected. See Section 2.6.3 [RCS], page 21.

‘-N’
‘--new-file’

In directory comparison, if a file is found in only one directory, treat it as present but
empty in the other directory. See Chapter 3 [Comparing Directories], page 31.

‘--new-group-format=format’
Use format to output a group of lines taken from just the second file in if-then-else
format. See Section 2.7.1 [Line Group Formats], page 23.

‘--new-line-format=format’
Use format to output a line taken from just the second file in if-then-else format. See
Section 2.7.2 [Line Formats], page 25.

‘--old-group-format=format’
Use format to output a group of lines taken from just the first file in if-then-else format.
See Section 2.7.1 [Line Group Formats], page 23.

Chapter 12: Invoking diff 63

‘--old-line-format=format’
Use format to output a line taken from just the first file in if-then-else format. See
Section 2.7.2 [Line Formats], page 25.

‘-p’ Show which C function each change is in. See Section 2.3.3.2 [C Function Headings],
page 17.

‘-P’ When comparing directories, if a file appears only in the second directory of the two,
treat it as present but empty in the other. See Chapter 3 [Comparing Directories],
page 31.

‘--paginate’
Pass the output through pr to paginate it. See Section 4.2 [Pagination], page 33.

‘-q’ Report only whether the files differ, not the details of the differences. See Section 1.6
[Brief], page 6.

‘-r’ When comparing directories, recursively compare any subdirectories found. See Chap-
ter 3 [Comparing Directories], page 31.

‘--rcs’ Output RCS-format diffs; like ‘-f’ except that each command specifies the number of
lines affected. See Section 2.6.3 [RCS], page 21.

‘--recursive’
When comparing directories, recursively compare any subdirectories found. See Chap-
ter 3 [Comparing Directories], page 31.

‘--report-identical-files’
Report when two files are the same. See Chapter 3 [Comparing Directories], page 31.

‘-s’ Report when two files are the same. See Chapter 3 [Comparing Directories], page 31.

‘-S file’ When comparing directories, start with the file file. This is used for resuming an
aborted comparison. See Chapter 3 [Comparing Directories], page 31.

‘--sdiff-merge-assist’
Print extra information to help sdiff. sdiff uses this option when it runs diff. This
option is not intended for users to use directly.

‘--show-c-function’
Show which C function each change is in. See Section 2.3.3.2 [C Function Headings],
page 17.

‘--show-function-line=regexp’
In context and unified format, for each hunk of differences, show some of the last
preceding line that matches regexp. See Section 2.3.3.1 [Specified Headings], page 16.

‘--side-by-side’
Use the side by side output format. See Section 2.5 [Side by Side Format], page 18.

64 Comparing and Merging Files

‘--speed-large-files’
Use heuristics to speed handling of large files that have numerous scattered small
changes. See Chapter 5 [diff Performance], page 35.

‘--starting-file=file’
When comparing directories, start with the file file. This is used for resuming an
aborted comparison. See Chapter 3 [Comparing Directories], page 31.

‘--suppress-common-lines’
Do not print common lines in side by side format. See Section 2.5 [Side by Side Format],
page 18.

‘-t’ Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See Section 4.1 [Tabs], page 33.

‘-T’ Output a tab rather than a space before the text of a line in normal or context format.
This causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs],
page 33.

‘--text’ Treat all files as text and compare them line-by-line, even if they do not appear to be
text. See Section 1.7 [Binary], page 7.

‘-u’ Use the unified output format. See Section 2.3.2 [Unified Format], page 14.

‘--unchanged-group-format=format’
Use format to output a group of common lines taken from both files in if-then-else
format. See Section 2.7.1 [Line Group Formats], page 23.

‘--unchanged-line-format=format’
Use format to output a line common to both files in if-then-else format. See Sec-
tion 2.7.2 [Line Formats], page 25.

‘--unidirectional-new-file’
When comparing directories, if a file appears only in the second directory of the two,
treat it as present but empty in the other. See Chapter 3 [Comparing Directories],
page 31.

‘-U lines’
‘--unified[=lines]’

Use the unified output format, showing lines (an integer) lines of context, or three if
lines is not given. See Section 2.3.2 [Unified Format], page 14. For proper operation,
patch typically needs at least two lines of context.

‘-v’
‘--version’

Output the version number of diff.

‘-w’ Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

Chapter 12: Invoking diff 65

‘-W columns’
‘--width=columns’

Use an output width of columns in side by side format. See Section 2.5 [Side by Side
Format], page 18.

‘-x pattern’
When comparing directories, ignore files and subdirectories whose basenames match
pattern. See Chapter 3 [Comparing Directories], page 31.

‘-X file’ When comparing directories, ignore files and subdirectories whose basenames match
any pattern contained in file. See Chapter 3 [Comparing Directories], page 31.

‘-y’ Use the side by side output format. See Section 2.5 [Side by Side Format], page 18.

66 Comparing and Merging Files

Chapter 13: Invoking diff3 67

13 Invoking diff3

The diff3 command compares three files and outputs descriptions of their differences. Its
arguments are as follows:

diff3 options. . . mine older yours

The files to compare are mine, older, and yours. At most one of these three file names may be
‘-’, which tells diff3 to read the standard input for that file.

An exit status of 0 means diff3 was successful, 1 means some conflicts were found, and 2 means
trouble.

13.1 Options to diff3

Below is a summary of all of the options that GNU diff3 accepts. Multiple single letter options
(unless they take an argument) can be combined into a single command line argument.

‘-a’ Treat all files as text and compare them line-by-line, even if they do not appear to be
text. See Section 1.7 [Binary], page 7.

‘-A’ Incorporate all changes from older to yours into mine, surrounding all conflicts with
bracket lines. See Section 7.2 [Marking Conflicts], page 42.

‘-e’ Generate an ed script that incorporates all the changes from older to yours into mine.
See Section 7.1 [Which Changes], page 41.

‘-E’ Like ‘-e’, except bracket lines from overlapping changes’ first and third files. See
Section 7.2 [Marking Conflicts], page 42. With ‘-e’, an overlapping change looks like
this:

<<<<<<< mine
lines from mine
=======
lines from yours
>>>>>>> yours

‘--ed’ Generate an ed script that incorporates all the changes from older to yours into mine.
See Section 7.1 [Which Changes], page 41.

‘--easy-only’
Like ‘-e’, except output only the nonoverlapping changes. See Section 7.1 [Which
Changes], page 41.

68 Comparing and Merging Files

‘-i’ Generate ‘w’ and ‘q’ commands at the end of the ed script for System V compatibility.
This option must be combined with one of the ‘-AeExX3’ options, and may not be
combined with ‘-m’. See Section 7.5 [Saving the Changed File], page 45.

‘--initial-tab’
Output a tab rather than two spaces before the text of a line in normal format. This
causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs], page 33.

‘-L label’
‘--label=label’

Use the label label for the brackets output by the ‘-A’, ‘-E’ and ‘-X’ options. This
option may be given up to three times, one for each input file. The default labels are
the names of the input files. Thus ‘diff3 -L X -L Y -L Z -m A B C’ acts like ‘diff3 -m

A B C’, except that the output looks like it came from files named ‘X’, ‘Y’ and ‘Z’ rather
than from files named ‘A’, ‘B’ and ‘C’. See Section 7.2 [Marking Conflicts], page 42.

‘-m’
‘--merge’ Apply the edit script to the first file and send the result to standard output. Unlike

piping the output from diff3 to ed, this works even for binary files and incomplete
lines. ‘-A’ is assumed if no edit script option is specified. See Section 7.3 [Bypassing
ed], page 44.

‘--overlap-only’
Like ‘-e’, except output only the overlapping changes. See Section 7.1 [Which Changes],
page 41.

‘--show-all’
Incorporate all unmerged changes from older to yours into mine, surrounding all over-
lapping changes with bracket lines. See Section 7.2 [Marking Conflicts], page 42.

‘--show-overlap’
Like ‘-e’, except bracket lines from overlapping changes’ first and third files. See
Section 7.2 [Marking Conflicts], page 42.

‘-T’ Output a tab rather than two spaces before the text of a line in normal format. This
causes the alignment of tabs in the line to look normal. See Section 4.1 [Tabs], page 33.

‘--text’ Treat all files as text and compare them line-by-line, even if they do not appear to be
text. See Section 1.7 [Binary], page 7.

‘-v’
‘--version’

Output the version number of diff3.

‘-x’ Like ‘-e’, except output only the overlapping changes. See Section 7.1 [Which Changes],
page 41.

Chapter 13: Invoking diff3 69

‘-X’ Like ‘-E’, except output only the overlapping changes. In other words, like ‘-x’, except
bracket changes as in ‘-E’. See Section 7.2 [Marking Conflicts], page 42.

‘-3’ Like ‘-e’, except output only the nonoverlapping changes. See Section 7.1 [Which
Changes], page 41.

70 Comparing and Merging Files

Chapter 14: Invoking patch 71

14 Invoking patch

Normally patch is invoked like this:

patch <patchfile

The full format for invoking patch is:

patch options. . . [origfile [patchfile]] [+ options. . . [origfile]]. . .

If you do not specify patchfile, or if patchfile is ‘-’, patch reads the patch (that is, the diff

output) from the standard input.

You can specify one or more of the original files as orig arguments; each one and options for
interpreting it is separated from the others with a ‘+’. See Section 9.4 [Multiple Patches], page 52,
for more information.

If you do not specify an input file on the command line, patch tries to figure out from the
leading text (any text in the patch that comes before the diff output) which file to edit. In the
header of a context or unified diff, patch looks in lines beginning with ‘***’, ‘---’, or ‘+++’; among
those, it chooses the shortest name of an existing file. Otherwise, if there is an ‘Index:’ line in the
leading text, patch tries to use the file name from that line. If patch cannot figure out the name
of an existing file from the leading text, it prompts you for the name of the file to patch.

If the input file does not exist or is read-only, and a suitable RCS or SCCS file exists, patch
attempts to check out or get the file before proceeding.

By default, patch replaces the original input file with the patched version, after renaming the
original file into a backup file (see Section 14.2 [Backups], page 72, for a description of how patch

names backup files). You can also specify where to put the output with the ‘-o output-file’ or
‘--output=output-file’ option.

14.1 Applying Patches in Other Directories

The ‘-d directory ’ or ‘--directory=directory ’ option to patch makes directory directory the
current directory for interpreting both file names in the patch file, and file names given as arguments
to other options (such as ‘-B’ and ‘-o’). For example, while in a news reading program, you can

72 Comparing and Merging Files

patch a file in the ‘/usr/src/emacs’ directory directly from the article containing the patch like
this:

| patch -d /usr/src/emacs

Sometimes the file names given in a patch contain leading directories, but you keep your files in
a directory different from the one given in the patch. In those cases, you can use the ‘-p[number]’
or ‘--strip[=number]’ option to set the file name strip count to number. The strip count tells
patch how many slashes, along with the directory names between them, to strip from the front of
file names. ‘-p’ with no number given is equivalent to ‘-p0’. By default, patch strips off all leading
directories, leaving just the base file names, except that when a file name given in the patch is a
relative file name and all of its leading directories already exist, patch does not strip off the leading
directory. (A relative file name is one that does not start with a slash.)

patch looks for each file (after any slashes have been stripped) in the current directory, or if
you used the ‘-d directory ’ option, in that directory.

For example, suppose the file name in the patch file is ‘/gnu/src/emacs/etc/NEWS’. Using ‘-p’
or ‘-p0’ gives the entire file name unmodified, ‘-p1’ gives ‘gnu/src/emacs/etc/NEWS’ (no leading
slash), ‘-p4’ gives ‘etc/NEWS’, and not specifying ‘-p’ at all gives ‘NEWS’.

14.2 Backup File Names

Normally, patch renames an original input file into a backup file by appending to its name the
extension ‘.orig’, or ‘~’ on systems that do not support long file names. The ‘-b backup-suffix’ or
‘--suffix=backup-suffix’ option uses backup-suffix as the backup extension instead.

Alternately, you can specify the extension for backup files with the SIMPLE_BACKUP_SUFFIX

environment variable, which the options override.

patch can also create numbered backup files the way GNU Emacs does. With this method,
instead of having a single backup of each file, patch makes a new backup file name each time
it patches a file. For example, the backups of a file named ‘sink’ would be called, successively,
‘sink.~1~’, ‘sink.~2~’, ‘sink.~3~’, etc.

The ‘-V backup-style’ or ‘--version-control=backup-style’ option takes as an argument a
method for creating backup file names. You can alternately control the type of backups that patch
makes with the VERSION_CONTROL environment variable, which the ‘-V’ option overrides. The

Chapter 14: Invoking patch 73

value of the VERSION_CONTROL environment variable and the argument to the ‘-V’ option are like
the GNU Emacs version-control variable (see Section 14.2 [The GNU Emacs Manual], page 72,
for more information on backup versions in Emacs). They also recognize synonyms that are more
descriptive. The valid values are listed below; unique abbreviations are acceptable.

‘t’
‘numbered’

Always make numbered backups.

‘nil’
‘existing’

Make numbered backups of files that already have them, simple backups of the others.
This is the default.

‘never’
‘simple’ Always make simple backups.

Alternately, you can tell patch to prepend a prefix, such as a directory name, to produce
backup file names. The ‘-B backup-prefix’ or ‘--prefix=backup-prefix’ option makes backup files
by prepending backup-prefix to them. If you use this option, patch ignores any ‘-b’ option that
you give.

If the backup file already exists, patch creates a new backup file name by changing the first
lowercase letter in the last component of the file name into uppercase. If there are no more lowercase
letters in the name, it removes the first character from the name. It repeats this process until it
comes up with a backup file name that does not already exist.

If you specify the output file with the ‘-o’ option, that file is the one that is backed up, not the
input file.

14.3 Reject File Names

The names for reject files (files containing patches that patch could not find a place to apply)
are normally the name of the output file with ‘.rej’ appended (or ‘#’ on systems that do not
support long file names).

Alternatively, you can tell patch to place all of the rejected patches in a single file. The ‘-r
reject-file’ or ‘--reject-file=reject-file’ option uses reject-file as the reject file name.

74 Comparing and Merging Files

14.4 Options to patch

Here is a summary of all of the options that patch accepts. Older versions of patch do not
accept long-named options or the ‘-t’, ‘-E’, or ‘-V’ options.

Multiple single-letter options that do not take an argument can be combined into a single
command line argument (with only one dash). Brackets ([and]) indicate that an option takes an
optional argument.

‘-b backup-suffix’
Use backup-suffix as the backup extension instead of ‘.orig’ or ‘~’. See Section 14.2
[Backups], page 72.

‘-B backup-prefix’
Use backup-prefix as a prefix to the backup file name. If this option is specified, any
‘-b’ option is ignored. See Section 14.2 [Backups], page 72.

‘--batch’ Do not ask any questions. See Section 9.5 [patch Messages], page 53.

‘-c’
‘--context’

Interpret the patch file as a context diff. See Section 9.1 [patch Input], page 49.

‘-d directory ’
‘--directory=directory ’

Makes directory directory the current directory for interpreting both file names in the
patch file, and file names given as arguments to other options. See Section 14.1 [patch
Directories], page 71.

‘-D name’ Make merged if-then-else output using format. See Section 2.7 [If-then-else], page 22.

‘--debug=number’
Set internal debugging flags. Of interest only to patch patchers.

‘-e’
‘--ed’ Interpret the patch file as an ed script. See Section 9.1 [patch Input], page 49.

‘-E’ Remove output files that are empty after the patches have been applied. See Section 9.3
[Empty Files], page 52.

‘-f’ Assume that the user knows exactly what he or she is doing, and do not ask any
questions. See Section 9.5 [patch Messages], page 53.

‘-F lines’ Set the maximum fuzz factor to lines. See Section 9.2.3 [Inexact], page 51.

‘--force’ Assume that the user knows exactly what he or she is doing, and do not ask any
questions. See Section 9.5 [patch Messages], page 53.

Chapter 14: Invoking patch 75

‘--forward’
Ignore patches that patch thinks are reversed or already applied. See also ‘-R’. See
Section 9.2.2 [Reversed Patches], page 50.

‘--fuzz=lines’
Set the maximum fuzz factor to lines. See Section 9.2.3 [Inexact], page 51.

‘--help’ Print a summary of the options that patch recognizes, then exit.

‘--ifdef=name’
Make merged if-then-else output using format. See Section 2.7 [If-then-else], page 22.

‘--ignore-white-space’
‘-l’ Let any sequence of white space in the patch file match any sequence of white space in

the input file. See Section 9.2.1 [Changed White Space], page 50.

‘-n’
‘--normal’

Interpret the patch file as a normal diff. See Section 9.1 [patch Input], page 49.

‘-N’ Ignore patches that patch thinks are reversed or already applied. See also ‘-R’. See
Section 9.2.2 [Reversed Patches], page 50.

‘-o output-file’
‘--output=output-file’

Use output-file as the output file name. See Section 14.4 [patch Options], page 74.

‘-p[number]’
Set the file name strip count to number. See Section 14.1 [patch Directories], page 71.

‘--prefix=backup-prefix’
Use backup-prefix as a prefix to the backup file name. If this option is specified, any
‘-b’ option is ignored. See Section 14.2 [Backups], page 72.

‘--quiet’ Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

‘-r reject-file’
Use reject-file as the reject file name. See Section 14.3 [Rejects], page 73.

‘-R’ Assume that this patch was created with the old and new files swapped. See Sec-
tion 9.2.2 [Reversed Patches], page 50.

‘--reject-file=reject-file’
Use reject-file as the reject file name. See Section 14.3 [Rejects], page 73.

‘--remove-empty-files’
Remove output files that are empty after the patches have been applied. See Section 9.3
[Empty Files], page 52.

76 Comparing and Merging Files

‘--reverse’
Assume that this patch was created with the old and new files swapped. See Sec-
tion 9.2.2 [Reversed Patches], page 50.

‘-s’ Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

‘-S’ Ignore this patch from the patch file, but continue looking for the next patch in the
file. See Section 9.4 [Multiple Patches], page 52.

‘--silent’
Work silently unless an error occurs. See Section 9.5 [patch Messages], page 53.

‘--skip’ Ignore this patch from the patch file, but continue looking for the next patch in the
file. See Section 9.4 [Multiple Patches], page 52.

‘--strip[=number]’
Set the file name strip count to number. See Section 14.1 [patch Directories], page 71.

‘--suffix=backup-suffix’
Use backup-suffix as the backup extension instead of ‘.orig’ or ‘~’. See Section 14.2
[Backups], page 72.

‘-t’ Do not ask any questions. See Section 9.5 [patch Messages], page 53.

‘-u’
‘--unified’

Interpret the patch file as a unified diff. See Section 9.1 [patch Input], page 49.

‘-v’ Output the revision header and patch level of patch.

‘-V backup-style’
Select the kind of backups to make. See Section 14.2 [Backups], page 72.

‘--version’
Output the revision header and patch level of patch, then exit.

‘--version=control=backup-style’
Select the kind of backups to make. See Section 14.2 [Backups], page 72.

‘-x number’
Set internal debugging flags. Of interest only to patch patchers.

Chapter 15: Invoking sdiff 77

15 Invoking sdiff

The sdiff command merges two files and interactively outputs the results. Its arguments are
as follows:

sdiff -o outfile options. . . from-file to-file

This merges from-file with to-file, with output to outfile. If from-file is a directory and to-file is
not, sdiff compares the file in from-file whose file name is that of to-file, and vice versa. from-file

and to-file may not both be directories.

sdiff options begin with ‘-’, so normally from-file and to-file may not begin with ‘-’. However,
‘--’ as an argument by itself treats the remaining arguments as file names even if they begin with
‘-’. You may not use ‘-’ as an input file.

An exit status of 0 means no differences were found, 1 means some differences were found, and
2 means trouble.

sdiff without ‘-o’ (or ‘--output’) produces a side-by-side difference. This usage is obsolete;
use ‘diff --side-by-side’ instead.

15.1 Options to sdiff

Below is a summary of all of the options that GNU sdiff accepts. Each option has two
equivalent names, one of which is a single letter preceded by ‘-’, and the other of which is a
long name preceded by ‘--’. Multiple single letter options (unless they take an argument) can be
combined into a single command line argument. Long named options can be abbreviated to any
unique prefix of their name.

‘-a’ Treat all files as text and compare them line-by-line, even if they do not appear to be
text. See Section 1.7 [Binary], page 7.

‘-b’ Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],
page 5.

‘-d’ Change the algorithm to perhaps find a smaller set of changes. This makes sdiff

slower (sometimes much slower). See Chapter 5 [diff Performance], page 35.

78 Comparing and Merging Files

‘-H’ Use heuristics to speed handling of large files that have numerous scattered small
changes. See Chapter 5 [diff Performance], page 35.

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See Section 4.1 [Tabs], page 33.

‘-i’ Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4
[Case Folding], page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match regexp. See Section 1.5
[Specified Folding], page 6.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2 [White Space], page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See Section 1.3 [Blank Lines],
page 5.

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be the same. See Section 1.4
[Case Folding], page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match regexp. See Section 1.5
[Specified Folding], page 6.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2 [White Space], page 4.

‘-l’
‘--left-column’

Print only the left column of two common lines. See Section 2.5 [Side by Side Format],
page 18.

‘--minimal’
Change the algorithm to perhaps find a smaller set of changes. This makes sdiff

slower (sometimes much slower). See Chapter 5 [diff Performance], page 35.

‘-o file’
‘--output=file’

Put merged output into file. This option is required for merging.

‘-s’
‘--suppress-common-lines’

Do not print common lines. See Section 2.5 [Side by Side Format], page 18.

Chapter 15: Invoking sdiff 79

‘--speed-large-files’
Use heuristics to speed handling of large files that have numerous scattered small
changes. See Chapter 5 [diff Performance], page 35.

‘-t’ Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See Section 4.1 [Tabs], page 33.

‘--text’ Treat all files as text and compare them line-by-line, even if they do not appear to be
text. See Section 1.7 [Binary], page 7.

‘-v’
‘--version’

Output the version number of sdiff.

‘-w columns’
‘--width=columns’

Use an output width of columns. See Section 2.5 [Side by Side Format], page 18. Note
that for historical reasons, this option is ‘-W’ in diff, ‘-w’ in sdiff.

‘-W’ Ignore horizontal white space when comparing lines. See Section 1.2 [White Space],
page 4. Note that for historical reasons, this option is ‘-w’ in diff, ‘-W’ in sdiff.

80 Comparing and Merging Files

Chapter 16: Incomplete Lines 81

16 Incomplete Lines

When an input file ends in a non-newline character, its last line is called an incomplete line

because its last character is not a newline. All other lines are called full lines and end in a newline
character. Incomplete lines do not match full lines unless differences in white space are ignored
(see Section 1.2 [White Space], page 4).

An incomplete line is normally distinguished on output from a full line by a following line that
starts with ‘\’. However, the RCS format (see Section 2.6.3 [RCS], page 21) outputs the incomplete
line as-is, without any trailing newline or following line. The side by side format normally represents
incomplete lines as-is, but in some cases uses a ‘\’ or ‘/’ gutter marker; See Section 2.4 [Side by
Side], page 17. The if-then-else line format preserves a line’s incompleteness with ‘%L’, and discards
the newline with ‘%l’; See Section 2.7.2 [Line Formats], page 25. Finally, with the ed and forward
ed output formats (see Chapter 2 [Output Formats], page 9) diff cannot represent an incomplete
line, so it pretends there was a newline and reports an error.

For example, suppose ‘F’ and ‘G’ are one-byte files that contain just ‘f’ and ‘g’, respectively.
Then ‘diff F G’ outputs

1c1
< f
\ No newline at end of file

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n F G’ outputs the following without
a trailing newline:

d1 1
a1 1
g

‘diff -e F G’ reports two errors and outputs the following:

1c
g
.

82 Comparing and Merging Files

Chapter 17: Future Projects 83

17 Future Projects

Here are some ideas for improving GNU diff and patch. The GNU project has identified some
improvements as potential programming projects for volunteers. You can also help by reporting
any bugs that you find.

If you are a programmer and would like to contribute something to the GNU project, please
consider volunteering for one of these projects. If you are seriously contemplating work, please
write to ‘gnu@prep.ai.mit.edu’ to coordinate with other volunteers.

17.1 Suggested Projects for Improving GNU diff and patch

One should be able to use GNU diff to generate a patch from any pair of directory trees,
and given the patch and a copy of one such tree, use patch to generate a faithful copy of the
other. Unfortunately, some changes to directory trees cannot be expressed using current patch
formats; also, patch does not handle some of the existing formats. These shortcomings motivate
the following suggested projects.

17.1.1 Handling Changes to the Directory Structure

diff and patch do not handle some changes to directory structure. For example, suppose one
directory tree contains a directory named ‘D’ with some subsidiary files, and another contains a file
with the same name ‘D’. ‘diff -r’ does not output enough information for patch to transform the
the directory subtree into the file.

There should be a way to specify that a file has been deleted without having to include its entire
contents in the patch file. There should also be a way to tell patch that a file was renamed, even
if there is no way for diff to generate such information.

These problems can be fixed by extending the diff output format to represent changes in
directory structure, and extending patch to understand these extensions.

84 Comparing and Merging Files

17.1.2 Files that are Neither Directories Nor Regular Files

Some files are neither directories nor regular files: they are unusual files like symbolic links,
device special files, named pipes, and sockets. Currently, diff treats symbolic links like regular
files; it treats other special files like regular files if they are specified at the top level, but simply
reports their presence when comparing directories. This means that patch cannot represent changes
to such files. For example, if you change which file a symbolic link points to, diff outputs the
difference between the two files, instead of the change to the symbolic link.

diff should optionally report changes to special files specially, and patch should be extended
to understand these extensions.

17.1.3 File Names that Contain Unusual Characters

When a file name contains an unusual character like a newline or white space, ‘diff -r’ generates
a patch that patch cannot parse. The problem is with format of diff output, not just with patch,
because with odd enough file names one can cause diff to generate a patch that is syntactically
correct but patches the wrong files. The format of diff output should be extended to handle all
possible file names.

17.1.4 Arbitrary Limits

GNU diff can analyze files with arbitrarily long lines and files that end in incomplete lines.
However, patch cannot patch such files. The patch internal limits on line lengths should be
removed, and patch should be extended to parse diff reports of incomplete lines.

17.1.5 Handling Files that Do Not Fit in Memory

diff operates by reading both files into memory. This method fails if the files are too large,
and diff should have a fallback.

One way to do this is to scan the files sequentially to compute hash codes of the lines and put
the lines in equivalence classes based only on hash code. Then compare the files normally. This
does produce some false matches.

Chapter 17: Future Projects 85

Then scan the two files sequentially again, checking each match to see whether it is real. When
a match is not real, mark both the “matching” lines as changed. Then build an edit script as usual.

The output routines would have to be changed to scan the files sequentially looking for the text
to print.

17.1.6 Ignoring Certain Changes

It would be nice to have a feature for specifying two strings, one in from-file and one in to-file,
which should be considered to match. Thus, if the two strings are ‘foo’ and ‘bar’, then if two lines
differ only in that ‘foo’ in file 1 corresponds to ‘bar’ in file 2, the lines are treated as identical.

It is not clear how general this feature can or should be, or what syntax should be used for it.

17.2 Reporting Bugs

If you think you have found a bug in GNU cmp, diff, diff3, sdiff, or patch, please report
it by electronic mail to ‘bug-gnu-utils@prep.ai.mit.edu’. Send as precise a description of the
problem as you can, including sample input files that produce the bug, if applicable.

Because Larry Wall has not released a new version of patch since mid 1988 and the GNU version
of patch has been changed since then, please send bug reports for patch by electronic mail to both
‘bug-gnu-utils@prep.ai.mit.edu’ and ‘lwall@netlabs.com’.

86 Comparing and Merging Files

Concept Index 87

Concept Index

!
‘!’ output format . 11

+
‘+-’ output format . 14

<
‘<’ output format . 10

‘<<<<<<<’ for marking conflicts . 42

A
aligning tabstops . 33

alternate file names . 17

B
backup file names . 72

binary file diff . 7

binary file patching . 84

blank and tab difference suppression 4

blank line difference suppression . 5

brief difference reports . 6

bug reports . 85

C
C function headings . 17

C if-then-else output format . 22

case difference suppression . 5

cmp invocation . 57

cmp options . 57

columnar output . 17

comparing three files . 37

conflict . 41

conflict marking . 42

context output format . 11

D
diagnostics from patch . 53

diff invocation . 59

diff merging . 47

diff options . 59

diff sample input . 9

diff3 hunks . 38

diff3 invocation . 67

diff3 options . 67

diff3 sample input . 37

directories and patch . 71

directory structure changes . 83

E
ed script output format . 19

empty files, removing . 52

F
file name alternates . 17

file names with unusual characters 84

format of diff output . 9

format of diff3 output . 37

formats for if-then-else line groups 23

forward ed script output format . 21

full lines . 81

function headings, C . 17

fuzz factor when patching . 51

H
headings . 16

hunks . 3

hunks for diff3 . 38

I
if-then-else output format . 22

ifdef output format . 22

imperfect patch application . 50

incomplete line merging . 45

incomplete lines . 81

inexact patches . 51

interactive merging . 47

introduction . 3

invoking cmp . 57

88 Comparing and Merging Files

invoking diff . 59

invoking diff3 . 67

invoking patch . 71

invoking sdiff . 77

L
large files . 84

line formats . 25

line group formats . 23

M
merge commands . 47

merged diff3 format . 44

merged output format . 22

merging from a common ancestor 41

merging interactively . 47

messages from patch . 53

multiple patches . 52

N
newline treatment by diff . 81

normal output format . 10

O
options for cmp . 57

options for diff . 59

options for diff3 . 67

options for patch . 74

options for sdiff . 77

output formats . 9

overlap . 41

overlapping change, selection of . 41

overview of diff and patch . 1

P
paginating diff output . 33

patch input format . 49

patch invocation . 71

patch making tips . 55

patch messages and questions . 53

patch options . 74

patching directories . 71

performance of diff . 35

projects for directories . 83

R
RCS script output format . 21

regular expression matching headings 16

regular expression suppression . 6

reject file names . 73

removing empty files . 52

reporting bugs . 85

reversed patches . 50

S
sample input for diff . 9

sample input for diff3 . 37

script output formats . 19

sdiff invocation . 77

sdiff options . 77

sdiff output format . 47

section headings . 16

side by side . 17

side by side format . 18

special files . 84

specified headings . 16

summarizing which files differ . 6

System V diff3 compatibility . 45

T
tab and blank difference suppression 4

tabstop alignment . 33

text versus binary diff . 7

tips for patch making . 55

two-column output . 17

U
unified output format . 14

unmerged change . 41

W
white space in patches . 50

i

Short Contents

Overview . 1

1 What Comparison Means . 3

2 diff Output Formats . 9

3 Comparing Directories . 31

4 Making diff Output Prettier . 33

5 diff Performance Tradeoffs. 35

6 Comparing Three Files . 37

7 Merging From a Common Ancestor. 41

8 Interactive Merging with sdiff . 47

9 Merging with patch . 49

10 Tips for Making Patch Distributions . 55

11 Invoking cmp . 57

12 Invoking diff . 59

13 Invoking diff3 . 67

14 Invoking patch . 71

15 Invoking sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83

Concept Index . 87

ii Comparing and Merging Files

iii

Table of Contents

Overview . 1

1 What Comparison Means . 3

1.1 Hunks . 3
1.2 Suppressing Differences in Blank and Tab Spacing 4
1.3 Suppressing Differences in Blank Lines . 5
1.4 Suppressing Case Differences . 5
1.5 Suppressing Lines Matching a Regular Expression 6
1.6 Summarizing Which Files Differ . 6
1.7 Binary Files and Forcing Text Comparisons . 7

2 diff Output Formats . 9

2.1 Two Sample Input Files . 9
2.2 Showing Differences Without Context . 10

2.2.1 Detailed Description of Normal Format 10
2.2.2 An Example of Normal Format . 11

2.3 Showing Differences in Their Context . 11
2.3.1 Context Format . 12

2.3.1.1 Detailed Description of Context Format. 12
2.3.1.2 An Example of Context Format 13
2.3.1.3 An Example of Context Format with Less Context

. 14
2.3.2 Unified Format . 14

2.3.2.1 Detailed Description of Unified Format 14
2.3.2.2 An Example of Unified Format 15

2.3.3 Showing Which Sections Differences Are in 16
2.3.3.1 Showing Lines That Match Regular Expressions

. 16
2.3.3.2 Showing C Function Headings 17

2.3.4 Showing Alternate File Names . 17
2.4 Showing Differences Side by Side . 17
2.5 Controlling Side by Side Format . 18

2.5.1 An Example of Side by Side Format . 19
2.6 Making Edit Scripts . 19

2.6.1 ed Scripts . 19
2.6.1.1 Detailed Description of ed Format 20
2.6.1.2 Example ed Script . 20

iv Comparing and Merging Files

2.6.2 Forward ed Scripts . 21
2.6.3 RCS Scripts . 21

2.7 Merging Files with If-then-else . 22
2.7.1 Line Group Formats . 23
2.7.2 Line Formats . 25
2.7.3 Detailed Description of If-then-else Format 27
2.7.4 An Example of If-then-else Format . 28

3 Comparing Directories . 31

4 Making diff Output Prettier . 33

4.1 Preserving Tabstop Alignment . 33
4.2 Paginating diff Output . 33

5 diff Performance Tradeoffs . 35

6 Comparing Three Files . 37

6.1 A Third Sample Input File . 37
6.2 Detailed Description of diff3 Normal Format 37
6.3 diff3 Hunks . 38
6.4 An Example of diff3 Normal Format . 39

7 Merging From a Common Ancestor 41

7.1 Selecting Which Changes to Incorporate . 41
7.2 Marking Conflicts . 42
7.3 Generating the Merged Output Directly. 44
7.4 How diff3 Merges Incomplete Lines . 45
7.5 Saving the Changed File . 45

8 Interactive Merging with sdiff 47

8.1 Specifying diff Options to sdiff . 47
8.2 Merge Commands . 47

9 Merging with patch . 49

9.1 Selecting the patch Input Format . 49
9.2 Applying Imperfect Patches . 50

9.2.1 Applying Patches with Changed White Space 50
9.2.2 Applying Reversed Patches . 50
9.2.3 Helping patch Find Inexact Matches 51

9.3 Removing Empty Files . 52
9.4 Multiple Patches in a File . 52

v

9.5 Messages and Questions from patch . 53

10 Tips for Making Patch Distributions 55

11 Invoking cmp . 57

11.1 Options to cmp . 57

12 Invoking diff . 59

12.1 Options to diff . 59

13 Invoking diff3 . 67

13.1 Options to diff3 . 67

14 Invoking patch . 71

14.1 Applying Patches in Other Directories . 71
14.2 Backup File Names . 72
14.3 Reject File Names . 73
14.4 Options to patch . 74

15 Invoking sdiff . 77

15.1 Options to sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83

17.1 Suggested Projects for Improving GNU diff and patch 83
17.1.1 Handling Changes to the Directory Structure 83
17.1.2 Files that are Neither Directories Nor Regular Files 84
17.1.3 File Names that Contain Unusual Characters 84
17.1.4 Arbitrary Limits . 84
17.1.5 Handling Files that Do Not Fit in Memory 84
17.1.6 Ignoring Certain Changes . 85

17.2 Reporting Bugs . 85

Concept Index . 87

vi Comparing and Merging Files

