
ISPELL

by Pace Willisson and Geoff Kuenning

Version 3.1

December 1993

Copyright c© 1988, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
Published by Geoffrey H. Kuenning
12840 Winthrop Ave.,
Granada Hills, CA 91344-1221 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Chapter 1: ISPELL 1

1 ISPELL

Ispell is a program that helps you to correct spelling and typographical errors in a file.
When presented with a word that is not in the dictionary, ispell attempts to find near
misses that might include the word you meant.

This manual describes how to use ispell from within emacs. Other information about
ispell is available from the Unix manual pages.

1.1 Using ispell from emacs

1.1.1 Checking a single word

The simplest emacs command for calling ispell is ’M-$’ (meta-dollar. On some terminals,
you must type ESC-$.) This checks the spelling of the word under the cursor. If the word
is found in the dictionary, then a message is printed in the echo area. Otherwise, ISPELL
attempts to generate near misses.

If any near misses are found, they are displayed in a separate window, each preceded by
a digit or character. If one of these is the word you wanted, just type its digit or character,
and it will replace the original word in your buffer.

If no near miss is right, or if none are displayed, you have five choices:

I

Insert the word in your private dictionary. Use this if you know that the word
is spelled correctly.

A

Accept the word for the duration of this editing session, but do not put it in
your private dictionary. Use this if you are not sure about the spelling of the
word, but you do not want to look it up immediately, or for terms that appear
in your document but are not truly words. The next time you start ispell, it
will have forgotten any accepted words.

SPC

Leave the word alone, and consider it misspelled if it is checked again.

R

Replace the word. This command prompts you for a string in the minibuffer.
You may type more than one word, and each word you type is checked again,
possibly finding other near misses. This command provides a handy way to
close in on a word that you have no idea how to spell. You can keep trying
different spellings until you find one that is close enough to get a near miss.

L

Lookup. Display words from the dictionary that contain a specified substring.
The substring is a regular expression, which means it can contain special char-
acters to be more selective about which words get displayed. See section “Reg-
exps” in emacs.

2 ISPELL V3.1

If the only special character in the regular expression is a leading ^, then a very
fast binary search will be used, instead of scanning the whole file.
Only a few matching words can be displayed in the ISPELL window. If you
want to see more, use the look program directly from the shell.

Of course, you can also type ^G to stop the command without changing anything.
If you make a change that you don’t like, just use emacs’ normal undo feature See section

“undo” in emacs.

1.1.2 Checking a whole buffer

If you want to check the spelling of all the words in a buffer, type the command M-x

ispell-buffer. This command scans the file, and makes a list of all the misspelled words.
When it is done, it moves the cursor to the first word on the list, and acts like you just
typed M-$ See Section 1.1.1 [Word], page 1.

When you finish with one word, the cursor is automatically moved to the next. If you
want to stop in the middle of the list type X or ^G.

1.1.3 Checking a region

You may check the words in the region with the command M-x ispell-region. See See
section “mark” in emacs.

The commands available are the same as for checking a whole buffer.

1.1.4 Using Multiple Dictionaries

Your site may have multiple dictionaries installed: a default one (usually
‘english.hash’), and several others for different languages (e.g. ‘deutsch.hash’) or
variations on a language (such as British spelling for English).

ispell-change-dictionary
This is the command to change the dictionary. It prompts for a new dictionary
name, with completion on the elements of ispell-dictionary.
It changes ispell-dictionary and kills the old ispell process, if one was run-
ning. A new one will be started as soon as necessary.
By just answering RET you can find out what the current dictionary is.

ispell-dictionary
If non-nil, a dictionary to use instead of the default one. This is passed to the
ispell process using the -d switch and is used as key in ispell-dictionary-
alist.
You should set this variable before your first call to ispell (e.g. in your ‘.emacs’),
or use the M-x ispell-change-dictionary command to change it, as changing
this variable only takes effect in a newly started ispell process.

ispell-dictionary-alist
An alist of dictionaries and their associated parameters.
Each element of this list is also a list:

Chapter 1: ISPELL 3

(dictionary-name
casechars not-casechars otherchars many-otherchars-p
ispell-args)

dictionary-name is a possible value of variable ispell-dictionary, nil means
the default dictionary.
casechars is a regular expression of valid characters that comprise a word.
not-casechars is the opposite regexp of casechars.
otherchars is a regular expression of other characters that are valid in word
constructs. Otherchars cannot be adjacent to each other in a word, nor can
they begin or end a word. This implies we can’t check ‘Stevens’’ as a correct
possessive and other correct formations.
Hint: regexp syntax requires the hyphen to be declared first here.
many-otherchars-p is non-nil if many otherchars are to be allowed in a word
instead of only one.
ispell-args is a list of additional arguments passed to the ispell subprocess.
Note that the casechars and otherchars slots of the alist should contain the
same character set as casechars and otherchars in the language‘.aff’ file (e.g.,
‘english.aff’).

1.2 Old Emacs

Until ispell becomes part of the standard emacs distribution, you will have to explicitly
request that it be loaded. Put the following lines in your emacs init file See section “init
file” in emacs.

(autoload ’ispell-word "ispell" "Check the spelling of word in buffer." t)
(autoload ’ispell-region "ispell" "Check the spelling of region." t)
(autoload ’ispell-buffer "ispell" "Check the spelling of buffer." t)
(global-set-key "\e$" ’ispell-word)

(It will do no harm to have these lines in your init file even after ispell is installed by
default.)

1.3 Your private dictionary

Whenever ispell is started the file ‘.ispell_words’ is read from your home directory (if
it exists). This file contains a list of words, one per line. The order of the words is not
important, but the case is. Ispell will consider all of the words good, and will use them as
possible near misses.

The I command adds words to ‘.ispell_words’, so normally you don’t have to worry
about the file. You may want to check it from time to time to make sure you have not
accidentally inserted a misspelled word.

1.4 All commands in emacs mode

DIGIT Select a near miss

4 ISPELL V3.1

I Insert into private dictionary

A Accept for this session

SPC Skip this time

R Replace with one or more words

L Lookup: search the dictionary using a regular expression

M-$ Check word

M-x ispell-buffer

Check buffer

M-x ispell-region

Check region

M-x ispell-change-dictionary

Select different dictionary.

1.5 Definition of a near miss

Two words are near each other if they can be made identical with one of the following
changes to one of the words:

Insert a blank space
Interchange two adjacent letters.
Change one letter.
Delete one letter.
Add one letter.

Someday, perhaps ispell will be extended so that words that sound alike would also be
considered near misses. If you would like to implement this, see Knuth, Volume 3, page 392
for a description of the Soundex algorithm which might apply.

1.6 Where it came from

Ispell has a long and convoluted history. Originally called SPELL, it was written by
Ralph E. Gorin in 1971. That version was written in assembly language for the DEC
PDP-10 to run under the WAITS operating system at the Stanford Artificial Intelligence
Laboratory. Subsequent versions, also in PDP-10 assembly language, were developed for
the BBN TENEX, MIT ITS, and DEC TOPS-10 and TOPS-20 operating systems. It was
later revised by W. E. Matson (1974), and W. B. Ackerman (1978), changing its name to
ISPELL in the process.

In 1983, Pace Willisson (pace@ai.mit.edu) converted this version to the C language and
modified it to work under Unix.

In 1987, Walt Buehring revised and enhanced ispell, and posted it to the Usenet along
with a dictionary. In addition, Walt wrote the first version of "ispell.el", the emacs interface.

Geoff Kuenning (geoff@ITcorp.com, that’s me, and by the way I pronounce it "Kenning")
picked up this version, fixed many bugs, and added further enhancements. In 1988 I got

Chapter 1: ISPELL 5

ambitious and rewrote major portions of the code, resulting in the table-driven multi-
lingual version. Ken Stevens (stevens@hplabs.hp.com) made overwhelming contributions to
the elisp support to produce the version you are using now.

Due to a misunderstanding involving the Free Software Foundation, it later became
necessary to rename this version to ispell to avoid confusion on the part of users.

Many other enhancements and bug fixes were provided by other people. Although I omit
mention here due to space, many of these people have also made significant contributions
to the version of ispell you see here. For a full list of people who have contributed to ispell,
refer to the file ‘Contributors’ which is distributed with the ispell sources.
Geoff Kuenning
geoff@ITcorp.com

6 ISPELL V3.1

i

Table of Contents

1 ISPELL . 1
1.1 Using ispell from emacs . 1

1.1.1 Checking a single word . 1
1.1.2 Checking a whole buffer . 2
1.1.3 Checking a region . 2
1.1.4 Using Multiple Dictionaries . 2

1.2 Old Emacs . 3
1.3 Your private dictionary . 3
1.4 All commands in emacs mode . 3
1.5 Definition of a near miss . 4
1.6 Where it came from . 4

ii ISPELL V3.1

	ISPELL
	Using ispell from emacs
	Checking a single word
	Checking a whole buffer
	Checking a region
	Using Multiple Dictionaries

	Old Emacs
	Your private dictionary
	All commands in emacs mode
	Definition of a near miss
	Where it came from

