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Foreword

Metacomputation is a research area related to deep program transformation.
The main problems addressed are program specialization (making use of par-
tially known input data and other information about a program), program fusion
(composing functions or program components of other kind), program inversion
(constructing a program that computes input data from known or desired out-
put results), program slicing (building a program that computes a subset of
the source program’s results). Despite the fact that, initially, metacomputation
was mainly considered as a technique for improving the efficiency of programs,
later it has been found to be applicable to other areas, such as theorem proving,
program verification, as well as various kinds of program analyses.

The origins of metacomputation can be traced back to work by Lionello Lom-
bardi on incremental computation in the 60s. The most known methods created
in the 70s and 80s are supercompilation by Valentin Turchin, mixed computation
by Andrei Ershov, partial evaluation by Neil Jones, (generalized) partial compu-
tation by Yoshihiko Futamura, deforestation by Phil Wadler, partial deduction
by Jan Komorowski, narrowing by Maria Alpuente et al. We mention just the
initiators and research leaders in the field of metacomputation. Certainly, there
are many other people who have contributed to the developments in this area
and are doing active research related to metacomputation.

While students, we were fortunate to witness the dawn of metacomputa-
tion. In Winter 1971/72 Valentin Turchin demonstrated at the Refal seminar in
Keldysh Institute that applying a kind of partial evaluation to a simple inter-
preter produced the effect that could be seen as “compilation”. Two years later,
in Fall 1974, he gave detailed lectures on supercompilation to a group of students
who perceived the ideas with great enthusiasm.

In 1976 V. F. Turchin met A. P. Ershov, who had come to Moscow from
Novosibirsk in order to present the computer science community his ideas on
mixed computation. Valentin Turchin and Andrei Ershov were pleased to dis-
cover they independently worked on close topics. V. F. Turchin showed A. P. Er-
shov three metasystem transition formulas describing the way of producing a
compiled program, a compiler and a compiler compiler by supercompiling an
interpreter and the supercompiler itself. A. P. Ershov demonstrated how his no-
tion of generating extension is applicable to solving various system programming
tasks including generation of a compiler. As a result of their contact the con-
nection between the generating extension and the second Turchin’s formula had



been established (which was later referred to by A. P. Ershov as “the double
run-through1 theorem by V. F. Turchin”2).

At that time A. P. Ershov had found a reference to “a rather interesting,
judging by the title, Y. Futamura’s paper”3 published in 1971 in a Japanese
journal with limited availability. When the paper was finally obtained, a concise
and elegant formulation of what was later called “the first and second Futamura
projections” was found in it.

Afterwards Andrei Ershov “infected” Neil Jones with the ideas, and soon
his team in Copenhagen University had introduced a new idea of a preliminary
“binding time analysis”, which radically simplified the machinery of partial eval-
uation and led to the first successful self-application of a specializer. This, in
turn, gave an opportunity to make experiments with the Futamura projections
demonstrating that they do work in practice and even produce results looking
as “natural” from the human viewpoint. Thus, the area of metacomputation
(although the term was not used yet) got its second wind and attracted the
attention of the computer science community.

Since then metacomputation has become a mature scientific discipline, many
problems have been solved, a lot of new problems have been discovered, and first
applications have been made. Nevertheless, metacomputation methods are not
used by rank-and-file programmers yet, and a lot of work is to be done.

The First International Workshop on Metacomputation in Russia will bring
together researchers working in the areas of program analysis and program ma-
nipulation based on metacomputation. These pre-proceedings contain 13 papers
accepted by the Program Committee. They represent the current state of re-
search of Moscow and Pereslavl scientists belonging to the Turchin’s school of
metacomputation as well as the achievements of our colleagues from Europe.
The workshop is planned to have enough time for seriously discussing the pa-
pers and for panels on the wide topics of common interest. We are sure it will
give new insights into the understanding of new methods and open problems.

The papers are also available online at the workshop web site.4

It is our pleasure to extend our warm greetings and best wishes to our teacher
Valentin Turchin, who, unfortunately, has no possibility to attend the workshop,
but whose presence we always feel.

June, 2008 Sergei Abramov
Andrei Klimov

Andrei Nemytykh
Sergei Romanenko

1 “Run-through” is a literal translation for the Russian term “прогонка”,
which is now usually rendered in English as “driving” and denotes one of the tech-
niques used in supercompilation. A. P. Ershov, however, used the term “run-through”
to refer to the supercompilation process as a whole.

2 http://ershov.iis.nsk.su/archive/eaimage.asp?lang=2&did=27518&fileid=166648
3 http://ershov.iis.nsk.su/archive/eaimage.asp?did=27518&fileid=166664
4 http://meta2008.pereslavl.ru
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Constructing Programs From Metasystem
Transition Proofs

G.W. Hamilton and M.H. Kabir

School of Computing
Dublin City University

Dublin 9
IRELAND

Abstract. It has previously been shown by Turchin in the context of
supercompilation how metasystem transitions can be used in the proof
of universally and existentially quantified conjectures. Positive super-
compilation is a variant of Turchin’s supercompilation which was intro-
duced in an attempt to study and explain the essentials of Turchin’s
supercompiler. In our own previous work, we have proposed a program
transformation algorithm called distillation, which is more powerful than
positive supercompilation, and have shown how this can be used to prove
a wider range of universally and existentially quantified conjectures in
our theorem prover Poit́ın. In this paper we show how a wide range of
programs can be constructed fully automatically from first-order speci-
fications through the use of metasystem transitions, and we prove that
the constructed programs are totally correct with respect to their spec-
ifications. To our knowledge, this is the first technique which has been
developed for the automatic construction of programs from their speci-
fications using metasystem transitions.

1 Introduction

The construction of programs from their specifications is a difficult process which
cannot always be performed fully automatically. In this paper, we show that if
specifications are encoded in a specialised form, which we call distilled form, then
we can construct programs meeting these specifications fully automatically. Dis-
tilled form is distinguished by creating no intermediate data structures; this
means that existence proofs for specifications in distilled form will require no in-
termediate lemmas, and can therefore be performed fully automatically. Distilled
form corresponds to the ‘read-only’ primitive recursive programs as defined by
Jones [11], within which data can be higher-order. As shown in [11], this class
of programs can be used to encode all problems which belong to the fairly wide
class of elementary sets.

In previous work [8], we proposed the distillation program transformation
algorithm, which was originally devised with the goal of eliminating intermediate
data structures from functional programs. The distillation algorithm was largely
influenced by positive supercompilation [7] (a variant of Turchin’s supercompiler
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[25]), but improves greatly upon it. For example, positive supercompilation can
only produce a linear speedup in programs with a call-by-name semantics, while
distillation can produce a superlinear speedup. The form of programs generated
by the distillation algorithm is precisely our distilled form. This suggests a two-
step process for the construction of programs from their specifications: firstly, the
specifications are transformed using distillation, then the distilled specifications
are provided as input to a theorem prover which can automatically construct
programs meeting these specifications.

The step from a program to the application of a metaprogram to this program
is a kind of metasystem transition [26,7]. Turchin has shown how metasystem
transitions can be used in conjunction with supercompilation to prove explicitly
quantified conjectures [24] by defining metaprograms for proving both univer-
sally and existentially quantified conjectures. However, he has not shown how
programs can be constructed from these proofs.

We have previously shown how techniques similar to those of Turchin can
be used in conjunction with the distillation algorithm to prove a wider range of
universally and existentially quantified conjectures using metasystem transitions
in our theorem prover Poit́ın [12,14]. In this paper we show how programs can
be constructed fully automatically from first-order specifications which are in
distilled form through the use of metasystem transitions, and prove that the
constructed programs are totally correct with respect to their specifications.
To our knowledge, this is the first technique which has been developed for the
automatic construction of programs from their specifications using metasystem
transitions.

The remainder of this paper is organised as follows. In Section 2, we describe
the language which will be used throughout this paper. We give a brief overview
of the distillation algorithm, and define the distilled form of expressions which
is generated by the algorithm. In Section 3, we show how the Poit́ın theorem
prover proves universally and existentially quantified conjectures through the
use of metasystem transitions. We give an example proof and we show that the
theorem prover is sound and complete for programs which are in distilled form.
In Section 4, we show how programs can be constructed fully automatically
from specifications which are in distilled form through the use of metasystem
transitions. We give an example of this program construction and prove that
the constructed programs are totally correct with respect to their specifications.
Section 5 considers related work and concludes.

2 Distillation

In this section, we define the language used throughout this paper and we give
a brief overview of the distillation algorithm.

2.1 Language

Definition 1 (Language). The language used throughout this paper is a simple
higher-order functional language as shown in Fig. 1. 2
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prog ::= e0 where f1 = e1 ; . . . ; fn = en ; program
e ::= v variable

| c e1 ... en constructor application
| λv.e lambda abstraction
| f function variable
| e0 e1 application
| case e0 of p1 ⇒ e1 | ... | pk ⇒ ek case expression
| let v = e0 in e1 let expression
| letrec f = e0 in e1 letrec expression

p ::= c v1 . . . vn pattern

Fig. 1. Language

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. It is assumed that the language is typed using the Hindley-
Milner polymorphic typing system (so erroneous terms such as (c e1 . . . en) e
and case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur). The variables in the
patterns of case expressions and the arguments of λ-abstractions are bound; all
other variables are free. We use FV (e) to denote the free variables in the ex-
pression e. We require that each function has exactly one definition and that all
variables within a definition are bound. The propositional operators (and , or ,
implies, etc.) are implemented as functions in this language.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has
arity 2. Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called
the selector, and e1 . . . ek are called the branches. The patterns in case expres-
sions may not be nested. Methods to transform case expressions with nested
patterns to ones without nested patterns are described in [1,27]. No variables
may appear more than once within a pattern. We assume that the patterns in
a case expression are non-overlapping and exhaustive. An example program in
the language is shown in Fig. 2.

2.2 Distillation

Distillation [8] is a powerful program transformation technique to remove inter-
mediate data structures from higher-order functional programs and represents
a significant advance over the positive supercompilation algorithm [7]. Using
the positive supercompilation algorithm, it is only possible to obtain a linear
improvement in the run-time performance of programs with a call-by-name se-
mantics; with distillation it is possible to produce a superlinear improvement.
This extra power is obtained by performing more than one transformation pass
over terms, as opposed to the single pass performed by positive supercompila-
tion. We do not give a full description of the distillation algorithm here; details
can be found in [8]. These details are not required to understand the remainder
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implies (and (member y xs) (member z xs)) (leq y z )
where
implies = λx .λy .case x of

True ⇒ y
| False ⇒ True

and = λx .λy .case x of
True ⇒ y
| False ⇒ False

member = λy .λxs.case xs of
Nil ⇒ False
| Cons x xs ⇒ case (eq x y) of

True ⇒ True
| False ⇒ member y xs

leq = λx .λy .case x of
Zero ⇒ True
| Succ x ⇒ case y of

Zero ⇒ False
| Succ y ⇒ leq x y

eq = λx .λy .case x of
Zero ⇒ case y of

Zero ⇒ True
| Succ y ⇒ False

| Succ x ⇒ case y of
Zero ⇒ False
| Succ y ⇒ eq x y

Fig. 2. Example Program

of this paper; it is sufficient to know that the expressions resulting from distil-
lation are in a specialised form which we call distilled form. The logical rules
presented in this paper are defined over this distilled form without the need to
know how expressions are converted into this form.

The transformation rules in distillation essentially perform normal-order re-
duction. Folding is performed when an expression is encountered which is an in-
stance of a previously encountered expression, and generalization is performed to
ensure termination of the transformation process. The terms which are compared
before folding or generalizing in distillation are terms which have already been
transformed; in positive supercompilation these will be untransformed terms.
Generalization is performed when an expression is encountered within which a
previously encountered expression is embedded. The form of embedding which
we use to guide this generalization is the homeomorphic embedding relation
which was derived from results by Higman [9] and Kruskal [18] and was defined
within term rewriting systems [6] for detecting the possible divergence of the
term rewriting process.
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2.3 Distilled Form

Definition 2 (Distilled Form). The expressions resulting from distillation are
in distilled form dt{}, where within an expression of the form dtρ, ρ denotes the
set of all variables which have been introduced using let expressions, and cannot
therefore appear in the selectors of case expressions. Distilled form dtρ is defined
as shown in Fig. 3. 2

dtρ ::= v0 v1 . . . vn

| c dtρ
1 . . . dtρ

n

| λv .dtρ

| case v of p1 ⇒ dtρ
1 | · · · | pk ⇒ dtρ

k , where v /∈ ρ

| let v = dtρ
0 in dt

(ρ∪{v})
1

| letrec f = λv1 . . . vn .dtρ in f v1 . . . vn

| f v1 . . . vn

Fig. 3. Distilled Form

In addition, at least one of the parameters in every function definition must be
decreasing; all functions which do not have this property are replaced by ⊥ dur-
ing distillation, where ⊥ is treated as a constructor in our language. Variables
which are introduced using let expressions cannot appear in the selectors of
case expressions. Expressions in distilled form therefore create no intermediate
structures. This means that proofs over expressions which are in distilled form
will require no intermediate lemmas, and can therefore be performed fully au-
tomatically. Programs in distilled form correspond to the ‘read-only’ primitive
recursive programs as defined in [11]. The program defined in Fig. 2 is trans-
formed by distillation into the program shown in Fig. 4. Note that the variables
xs, y and z are also free within this program. We can see that all the intermediate
structures have been eliminated from this program.

3 Theorem Proving Using Metasystem Transitions

In this section, we show how the theorem prover Poit́ın handles explicit quan-
tification using metasystem transitions. To facilitate this, we add quantifiers of
the form ALL v.e and EX v.e to our language, where the quantified variable v
must be first-order. These quantifiers are defined over the three-valued logic with
values True, False and ⊥. The universally quantified expression ALL v.e has
the value True if the expression e has the value True for all possible values of
the quantified variable v, False if e has the value False for at least one value of
v, and ⊥ if e has the value ⊥. The existentially quantified expression EX v.e has
the value True if the expression e has the value True for at least one value of the
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case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒
letrec g =
λx .λy .λz .case x of

Zero ⇒ case y of
Zero ⇒ True
| Succ y ′ ⇒ case z of

Zero ⇒ False
| Succ z ′ ⇒ True

Succ x ′ ⇒
case y of

Zero ⇒ False
| Succ y ′ ⇒ case z of

Zero ⇒ True
| Succ z ′ ⇒ g x ′ y ′ z ′

in g x y z
Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 4. Example Program Distilled

quantified variable v, False if e has the value False for all values of v, and ⊥ if e
has the value ⊥. These quantifiers can be arbitrarily nested within an expression,
provided that the expression is well-typed. The addition of these quantifiers into
our language means that programs are no longer executable; however, the rules
defined in this section show how these quantifiers can be eliminated to produce
an executable program. We give the definitions of the sets of rules A for elim-
inating universal quantifiers and E for eliminating existential quantifiers which
have been implemented in Poit́ın. More details of these rules, including examples
of their application and a proof of their soundness, can be found in [15,12].

When a quantified expression is encountered by Poit́ın, the expression is
first of all transformed by distillation. A metasystem transition is then used
to apply inductive proof rules to the resulting distilled expression. If there are
a number of nested quantifiers within the conjecture to be proved, then the
proof rules are applied to the innermost quantified expression first. These inner
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quantified expressions may contain free variables, which will be bound by another
quantifier in some outer scope. The expression resulting from the application of
the proof rules may therefore also contain free variables if these were present
in the original expression. We therefore construct a hierarchy of metasystems
in which the construction of each subsequent level is achieved by a metasystem
transition. All quantifiers will be eliminated in the final resulting expression.

3.1 Rules for Universal Quantification

The rules for proving a universally quantified conjecture e are of the form
A[[e]] ρ φ σ as shown in Fig. 5, where the parameter ρ is an environment map-
ping local variables to their values, φ is the set of previously encountered function
calls and σ is the set of universally quantified variables. Note that these rules will
only be applied to expressions which are in distilled form. Using these rules, the
local variables contained within the domain of ρ and the universally quantified
variables contained within σ are eliminated, and a simplified expression defined
over the remaining free variables is obtained. If there are no free variables, then
the input conjecture is reduced to a value in our three-valued logic.

In rule (A1), if a local variable is encountered, then the value of this vari-
able in the environment ρ is substituted for it and the resulting expression is
further simplified using the proof rules. If a universally quantified variable is
encountered, then since it must have a value in our three-valued logic, the value
False is returned as the variable cannot always have the value True. If a free
variable is encountered, then it remains unchanged. In rule (A2), if a construc-
tor is encountered, then the value of this constructor is returned; this must be
a value in our three-valued logic, since the input term is also of this type and
contains no intermediate structures. In rule (A3), if a λ-abstraction is encoun-
tered, then the body of the abstraction is further simplified. In rule (A4), if we
encounter a case expression then, since this expression must be in distilled form,
the redex must be a non-local variable. If this variable is universally quantified,
then a case split is performed in which we prove the current term separately
for each of the possible values of the selector, and then return the conjunction
of the resulting values. The different possible values of the selector are simply
the patterns within the case expression. If the redex variable is not universally
quantified, then it must be free, so it remains in the resulting term, and the
proof rules are further applied to the branches of the case expression. In rule
(A5), if we encounter a let expression and none of the variables in the extracted
expression are free, then the proof rules are applied to the extracted expres-
sion and the resulting value for the let variable is added to the environment ρ
before applying the proof rules to the generalized expression. If the extracted
expression contains free variables, then the proof rules are applied to each of the
sub-expressions within the let. In rule (A6), if we encounter a letrec function
definition and none of the parameters in the initial application of this function
are free, then this function application is a potential inductive hypothesis. Since
at least one of these parameters must be decreasing, this parameter can be used
as the induction variable. If we subsequently encounter a recursive call of this



16 G.W. Hamilton and M.H. Kabir

A[[v0 v1 . . . vn]] ρ φ σ (A1)
= A[[e[v1/v′1 . . . vn/v′n]]] ρ φ σ, if ρ(v0) = λv′1 . . . v′n.e
= False, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

A[[c]] ρ φ σ = c (A2)

A[[λv.e]] ρ φ σ = λv.A[[e]] ρ φ σ (A3)

A[[case v of p1 : e′1 | . . . | pk : e′k]] ρ φ σ (A4)
= (A[[e′1]] ρ φ σ1) ∧ . . . ∧ (A[[e′k]] ρ φ σk), if v ∈ σ
= case v of p1 : (A[[e′1]] ρ φ σ) | . . . | pk : (A[[e′k]] ρ φ σ), otherwise
where
σi = σ ∪ FV (pi)

A[[let v = e0 in e1]] ρ φ σ (A5)
= A[[e1]] ρ[(A[[e0]] ρ φ σ)/v] φ σ, if FV (e0) ⊆ (dom(ρ) ∪ σ)
= let v = (A[[e0]] ρ φ σ) in (A[[e1]] ρ φ σ), otherwise

A[[letrec f = λv1 . . . vn.e0 in f v′1 . . . v′n]] ρ φ σ (A6)
= e′0, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= letrec f = λv′′1 . . . v′′k .e′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = A[[e0]] ρ (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

A[[f v1 . . . vn]] ρ φ σ (A7)
= True, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= (f v′′1 . . . v′′k )[v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

Fig. 5. Proof Rules for Universal Quantification

function in rule (A7), then we have re-encountered this inductive hypothesis, so
the value True is returned. If a function definition contains free variables, then
the function is re-defined over these free variables.

As an example of the application of these rules, consider the expression ALL
z.e where e is the program defined in Fig. 2. We first of all apply distillation
to the expression e, yielding the distilled expression e′ as shown in Fig. 4. We
then apply the universal proof rules A[[e′]] {} {} {z} for the universal variable
z giving the program shown in Fig. 6. We can see that the variable z has been
eliminated, and the variables xs and y are still free within the resulting program.
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case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λx .λy .case x of

Zero ⇒ case y of
Zero ⇒ True
| Succ y ′ ⇒ False

| Succ x ′ ⇒ case y of
Zero ⇒ False
| Succ y ′ ⇒ g x ′ y ′

in g x y
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 6. Program Resulting From Application of Universal Proof Rules

3.2 Rules for Existential Quantification

The rules for proving an existentially quantified conjecture e are of the form
E [[e]] ρ φ σ as shown in Fig. 7, where the parameter ρ is an environment mapping
local variables to their values, φ is the set of previously encountered function
calls and σ is the set of existentially quantified variables. Using these rules, the
local variables contained within the domain of ρ and the existentially quantified
variables contained within σ are eliminated, and a simplified expression over the
remaining free variables is obtained.

The rules are similar to those for universal quantification, with the only
major differences being in rules (E1), (E4), (E6) and (E7). In rule (E1), if an
existentially quantified variable is encountered, then since it must have a value
in our three-valued logic, the value True is returned as the value of the variable
can be True. In rule (E4), if the redex in a case expression is an existentially
quantified variable, then we also perform a case split and prove the current term
separately for each of the possible values of the selector, but in this instance we
return the disjunction of the resulting values. In rules (E6) and (E7), function
applications are no longer possible inductive hypotheses as they contain existen-
tial variables. However, if none of the parameters in a function application are
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E [[v0 v1 . . . vn]] ρ φ σ (E1)
= E [[e[v1/v′1 . . . vn/v′n]]] ρ φ σ, if ρ(v0) = λv′1 . . . v′n.e
= True, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

E [[c]] ρ φ σ = c (E2)

E [[λv.e]] ρ φ σ = λv.E [[e]] ρ φ σ (E3)

E [[case v of p1 : e′1 | . . . | pk : e′k]] ρ φ σ (E4)
= (E [[e′1]] ρ φ σ1) ∨ . . . ∨ (E [[e′k]] ρ φ σk), if v ∈ σ
= case v of p1 : (E [[e′1]] ρ φ σ) | . . . | pk : (E [[e′k]] ρ φ σ), otherwise
where
σi = σ ∪ FV (pi)

E [[let v = e0 in e1]] ρ φ σ (E5)
= E [[e1]] ρ[(E [[e0]] ρ φ σ)/v] φ σ, if FV (e0) ⊆ (dom(ρ) ∪ σ)
= let v = (E [[e0]] ρ φ σ) in (E [[e1]] ρ φ σ), otherwise

E [[letrec f = λv1 . . . vn.e0 in f v′1 . . . v′n]] ρ φ σ (E6)
= e′0, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= letrec f = λv′′1 . . . v′′k .e′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = E [[e0]] ρ (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

E [[f v1 . . . vn]] ρ φ σ (E7)
= False, if {v′1 . . . v′n} ⊆ (dom(ρ) ∪ σ)
= (f v′′1 . . . v′′k )[v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} \ (dom(ρ) ∪ σ)

Fig. 7. Proof Rules for Existential Quantification

free then the value False is returned as we know that the search space of the
existential variables has been exhausted.

As an example of the application of these rules, consider the proof of the
conjecture ALL xs.EX y.ALL z.e where e is the program defined in Fig. 2. We
first of all apply distillation to the expression e, yielding the distilled expression
e′ as shown in Fig. 4. We then apply the universal proof rules as shown above to
the expression ALL z.e′, giving the expression e′′ shown in Fig. 6. The existential
proof rules E [[e′′]] {} {} {y} are then applied for the existential variable y giving
the program shown in Fig. 8.
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case xs of
Nil ⇒ True
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λv .case v of

Zero ⇒ True
| Succ v ⇒ g v

in g x
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 8. Program Resulting From Application of Existential Proof Rules

We can see that the variable y has been eliminated and that the variable xs
is still free. We then apply the universal proof rules A[[e′′′]] {} {} {xs} where e′′′

is the expression shown in Fig. 8 and xs is the universally quantified variable,
giving the value True as required.

3.3 Soundness and Relative Completeness

In this section, we consider the soundness and relative completeness of our theo-
rem prover. Full details of the proofs of these properties can be found in [15,12];
we do not include these here. To facilitate these proofs, sequent calculus rules are
defined for the distilled form of conjecture which is input to our theorem prover.
Note that there is no need for a cut rule as all the intermediate structures in the
input conjecture will have been eliminated.

Our proof rules are proved to be sound by showing that all conjectures in
distilled form which are found to have the value True using our proof rules can
also be proved using the sequent calculus rules.

Theorem 1 (Soundness of Universal Proof Rules).
A[[e]] {} φ {v1 . . . vn} = True ∧ e ∈ dt{} ⇒ φ ` ALL v1 . . . vn.e 2

Theorem 2 (Soundness of Existential Proof Rules).
E [[e]] {} φ {v1 . . . vn} = True ∧ e ∈ dt{} ⇒ φ ` EX v1 . . . vn.e 2

Our proof rules are proved to be complete for all conjectures which are in distilled
form by showing that all conjectures in distilled form which can be proved using
the sequent calculus rules also have the value True using our proof rules.
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Theorem 3 (Relative Completeness of Universal Proof Rules).
φ ` ALL v1 . . . vn.e ∧ e ∈ dt{} ⇒ A[[e]] {} φ {v1 . . . vn} = True 2

Theorem 4 (Relative Completeness of Existential Proof Rules).
φ ` EX v1 . . . vn.e ∧ e ∈ dt{} ⇒ E [[e]] {} φ {v1 . . . vn} = True 2

The proofs of each of these theorems are by recursion induction on the rules A
and E . Details of the proofs can be found in [15,12].

4 Program Construction Using Metasystem Transitions

In this section, we present our novel technique for the construction of programs
from specifications. The constructed programs essentially compute the existen-
tial witness of the proof of their corresponding specification. To facilitate this,
we add specifications of the form ANY v.e to our language, where the quantified
variable v must be first-order. The specification ANY v.e can have any value of
the quantified variable v for which the expression e has the value True; if no
such value exists, then it has the undefined value ⊥. The variable v is there-
fore implicitly existentially quantified within e, but the ANY quantifier differs
from the existential quantifier EX in that it has the same type as the variable v,
rather than being a vlaue in our three-valued logic. When a specification ANY
v.e is encountered by Poit́ın, the quantified expression e is first of all transformed
using distillation. A metasystem transition is then used to apply the rules for
program construction to the resulting distilled expression, thus constructing an
executable program form a non-executable specification.

4.1 Rules for Program Construction

The program construction rules are defined by C[[e]] [[e′]] φ σ as shown in Fig.
9, where the expression e is the distilled specification, e′ is the existential wit-
ness, φ is the set of the previously encountered function calls and σ is the set
of universally quantified variables. For a specification ANY v.e, the quantified
variable v is passed as the initial existential witness and the free variables in the
specification are passed as the initial set of universally quantified variables.

In rule (C1), if a universally quantified variable is encountered, then since it
must be a value in our three-valued logic, the value ⊥ is returned as the variable
cannot have the value True. Otherwise, the value of the variable is returned
unchanged. In rule (C2), if we encounter a constructor, then if this constructor
is True and the existential witness is fully instantiated, the value of the existen-
tial witness is returned. Otherwise, the value ⊥ is returned. In rule (C3), if a
λ-abstraction is encountered, then the program construction rules are applied to
the body of the abstraction. In rule (C4), if we encounter a case expression then,
since this expression must be in distilled form, the redex must be a non-local
variable. If this variable is universally quantified, then it remains within the ex-
pression and the program construction rules are further applied to the branches
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C[[v0 v1 . . . vn ]][[e]] φ σ = ⊥, if v0 ∈ σ
= v0 v1 . . . vn, otherwise

(C1)

C[[c]][[e]] φ σ = e, if c = True ∧ FV (e) = {}
= ⊥,otherwise

(C2)

C[[λv .e]][[e ′]] φ σ = λv .C[[e]][[e ′]] φ σ (C3)

C[[case v of p1 ⇒ e1 | · · · | pn ⇒ en ]][[e]] φ σ (C4)
= case v of p1 ⇒ (C[[e1 ]][[e]] φ σ1) | · · · | pn ⇒ (C[[en ]][[e]] φ σn), if v ∈ σ
= (C[[e1 ]][[e[p1/v ]]] φ σ) t . . . t (C[[en ]][[e[pn/v ]]] φ σ), otherwise
where
σi = σ ∪ FV (pi)

C[[let v = e0 in e1 ]][[e]] φ σ = let v = (C[[e0]][[e]] φ σ) in (C[[e1]][[e]] φ σ) (C5)

C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[v ]] φ σ (C6)

= e′0, if {v′1 . . . v′n} ∩ σ = {}
= letrec f = λv ′′1 . . . v ′′k .e ′0 in f v′′1 . . . v′′k , otherwise
where
e′0 = C[[e0 ]][[v ]] (φ ∪ {f v′1 . . . v′n}) σ
{v′′1 . . . v′′k} = {v′1 . . . v′n} ∩ σ

C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[c e1 . . . ek ]] φ σ (C7)

= C[[e0 ]][[c e1 . . . ek ]] (φ ∪ {f v′1 . . . v′n}) σ, if {v′1 . . . v′n} ∩ σ = {}
= c (C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v

′
n]][[e1 ]] φ σ)

. . . (C[[letrec f = λv1 . . . vn .e0 in f v′1. . . v
′
n]][[ek ]] φ σ),

otherwise

C[[f v1. . . vn]][[v ]] φ σ (C8)
= ⊥, if {v′1 . . . v′n} ∩ σ = {}
= f v′′1 . . . v′′k [v1/v′1 . . . vn/v′n], otherwise
where
(f v′1 . . . v′n) ∈ φ
{v′′1 . . . v′′k} = {v′1 . . . v′n} ∩ σ

C[[f v1. . . vn]][[c e1 . . . ek ]] φ σ (C9)
= ⊥, if {v′1 . . . v′n} ∩ σ = {}
= c (C[[f v1. . . vn]][[e1 ]] φ σ) . . . (C[[f v1. . . vn]][[ek ]] φ σ), otherwise

Fig. 9. Rules for Program Construction

of the case expression. Before transforming each branch, the corresponding pat-
tern variables are added to σ as they are also implicitly universally quantified. If
the selector is existentially quantified, existential witnesses are constructed for
each of the branches separately. These witnesses will be constructed using the
corresponding patterns which give the value of the selector within the branch.
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The existential witness for the overall expression is then given by the least upper
bound of these existential witnesses for each branch (the least upper bound op-
erator t is defined separately for each of the data types in our language). In rule
(C5), if we encounter a let expression, then the program construction rules are
applied to each of the sub-expressions contained within it. In rules (C6)-(C9), if
we encounter a recursive function call, then this is simplified to be defined over
only the universal variables of this call. If the recursive call does not contain any
universally quantified variables, then the value ⊥ is returned as the search space
of the existential variables has been exhausted.

4.2 Example

In this section, we give an example of the application of our program construction
rules. Consider the construction of a program from the specification ANY y. ALL
z.e where e is the program defined in Fig. 2. We first of all apply distillation to
the expression e, yielding the distilled expression e′ as shown in Figure 4. We
then apply the universal proof rules as shown previously to the expression ALL
z.e′, giving the expression e′′ as shown in Fig. 6. We then apply the program
construction rules C[[e′′]][[y]] {} {xs} where y is the existential witness and xs is
the only free variable in e′′, giving the program shown in Fig. 10.

case xs of
Nil ⇒ ⊥
Cons x xs ⇒

letrec f =
λx .λxs.case xs of

Nil ⇒ letrec g =
λv .case v of

Zero ⇒ Zero
| Succ v ⇒ Succ (g v)

in g x
| Cons x ′ xs ′ ⇒ letrec h =

λy .λz .case y of
Zero ⇒ f x xs ′

| Succ y ⇒ case z of
Zero ⇒ f x ′ xs ′

| Succ z ⇒ h y z
in h x x ′

in f x xs

Fig. 10. Program Resulting From Application of Program Construction Rules
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From this, we can see that we have generated a program for finding the
smallest element in the list xs fully automatically from the specification, and
that this program creates no intermediate data structures.

4.3 Correctness of Constructed Programs

In order to prove that the programs constructed by our program construction
rules are correct with respect to the original specification ANY v.e we need
to show that when the constructed existential witnesses are substituted for the
existential variables in the specification, then the specification statement has the
value True.

Theorem 5 (Correctness of Constructed Programs).
C[[e]][[e ′]] φ σ = e′[e1/v1 . . . en/vn] ⇒ A[[e[e1/v1 . . . en/vn]]] {} φ σ = True
where {v1 . . . vn} = FV (e′) 2

The proof is by recursion induction on the rules C. Full details of the proof can
be found in [13,12].

5 Conclusion and Related Work

In this paper, we have shown how metasystem transitions can be used in con-
junction with the distillation transformation algorithm to prove a wide range
of theorems in first-order logic fully automatically. The programs generated by
distillation are in distilled form; they create no intermediate structures, and cor-
respond to the ‘read-only’ primitive recursive programs [11], within which data
can be higher-order. As shown in [11], this form can be used to encode all prob-
lems which belong to the fairly wide class of elementary sets. We have shown
that our theorem prover is sound and complete for theorems which are in this
form. We then showed how programs can be constructed fully automatically from
specifications which are in this form through the use of metasystem transitions.
We have given an example of the application of our approach, and proved that
the constructed programs are totally correct with respect to their specifications.

The most closely related work to that presented here is Turchin’s work on
supercompilation [25]. Turchin has shown how metasystem transitions can be
used in conjunction with supercompilation to prove explicitly quantified con-
jectures [26], but has not shown how programs can be constructed from their
specifications using metasystem transitions. To our knowledge, the techniques
described in this paper are the first which have been developed for the automatic
construction of programs from their specifications using metasystem transitions.
Distillation is more powerful than positive supercompilation [7], removing more
intermediate structures. The presence of more intermediate structures implies
the need for more intermediate lemmas when theorem proving. The set of the-
orems which can be proved fully automatically using positive supercompilation
is therefore a subset of those which can be proved fully automatically using
distillation.
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The transformation of logic programs can be regarded as the construction
of programs from specifications which contain implicit existential quantification.
There has been a considerable amount of work on the use of logic program
transformation for inductive theorem proving (for example, [22,23,19]). Many of
these techniques are not fully automatic, and their fully automated components
are of similar power to supercompilation, so they will not be able to prove as
many theorems fully automatically as the technique described in this paper.

A wide range of inductive theorem proving systems have been developed
(for example, NQTHM [4], CLAM [5], INKA [3], RRL [16]), but these tend to
concentrate mainly on universal quantification, and therefore cannot be used for
program synthesis. The inclusion of existential quantification is very problematic
and greatly complicates the theorem proving process. Some techniques which
have been developed for program synthesis from non-executable specifications
include constructive synthesis, deductive synthesis and middle-out reasoning.

Constructive synthesis (e.g. [2]) is based on the Curry-Howard isomorphism
[10] and uses the proof-as-programs principle. In this approach, a proof is con-
structed in a constructive type theory such as that of Martin-Löf [21]. There is
a one-to-one relationship between this constructive proof and the corresponding
program, which can be easily extracted from the proof. Deductive synthesis (e.g.
[20]) attempts to derive an executable program from a high level specification by
applying rules of inference. For example, the approach of Manna and Waldinger
[20] incorporates ideas from resolution and inductive theorem proving as rules
of inference. Middle-out reasoning (e.g. [17]) represents undefined functions in
the synthesis conjecture as meta-variables. These meta-variables are instantiated
gradually as the subsequent proof takes place. When the proof is complete, the
meta-variables should be instantiated to the correct corresponding program.

The programs constructed using the above techniques can often be quite
inefficient. The programs constructed using our technique will construct no in-
termediate structures and should therefore be more efficient. Also, none of the
above techniques for program construction are fully automatic and may therefore
require user guidance. Although it may be argued that the additional lemmas
which are required using these techniques can themselves be automated, the
techniques can never be fully automatic as it will never be possible to encode all
possible lemmas within them. However, it will of course be possible to construct
some programs using these techniques which cannot be constructed using the
technique described in this paper. Research is still continuing on determining
the class of specifications which can be transformed by distillation into distilled
form to allow programs to be constructed automatically from them using our
technique.
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(Workshop Version)
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Abstract. A self-interpreter and a program specialiser with the follow-
ing characteristics are developed for a simple imperative language:

1) The self-interpreter runs with program-independent interpretive over-
head; 2) the specialiser achieves optimal specialisation, that is, it elim-
inates all interpretation overhead; 3) the specialiser has been run on
a variety of small and large programs, including specialising the self-
interpreter to itself; 4) all specialiser parts except for loop unfolding
have been proven to terminate.
We achieve the above by using a structured language with separated con-
trol and data flow, containing loops but without while. The specialiser
uses two-level binding-time annotations in a new way: source annotations
are used to ensure correctness of specialised programs. A novelty: the spe-
cialiser has no need for a pending list, and does no call graph analysis
of the residual program. A source-to-source normalisation phase does
program transformations to avoid situations where the specialiser would
need to specialise code based on an unknown state. A pruning phase
efficiently achieves the effect of Romanenko’s arity raising.

Two interesting lines of work concern self-interpreters for programming lan-
guages. One line is to develop a self-interpreter with program-independent in-
terpretation overhead; this was the basis for the linear-time complexity hier-
archy of [27,25,14,16,24,4]. Another line is to develop a program specialiser1

and a self-interpreter that allow optimal program specialisation, a measure of
the strength/quality of a program specialiser, discussed in [18] Sections 6.4 and
8.5.1, and in [9,8,10,19,28]2.

The technical breakthrough for each line was to construct a self-interpreter
with a certain property. We know of no prior self interpreter sint that simulta-
neously possesses both properties:

– sint runs programs with program-independent overhead; and
– sint can be specialised optimally.

1 Also known as a partial evaluator.
2 As known from many fields, “optimality” is a very slippery concept. The formulation

for the strength/quality of a specialiser in [18] turned out to be practically useful,
and has since been dubbed Jones-optimality.
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The above was our initial goal. Bottom line: the goal was achieved (see [11] for
details) and, along the way, new insights were gained into the control structure of
specialised programs; relations between binding-time annotations, conditionals
and loop unfolding rules; the use of program transformation to allow more liberal
unfolding; and how to specialise programs with tree-structured values.

1 Programming languages, interpretation overhead and
optimality

Basics. Program specialisation, or partial evaluation, is a well-established au-
tomatic program transformation [18,6]. Its purpose is to speed up programs by
exploiting partial, compile-time, knowledge of the subject program’s run-time in-
put. Standard jargon is to use the term static for that part of the program’s input
known at specialisation time, and dynamic for that part of the input only known
at run-time. We briefly recapitulate central notions concerning interpreters and
specialisers; for an in-depth coverage, the reader is referred to [18,16].

A programming language L consists of a set of programs Prog, a set of
data D, and a semantic function [[ ]] : Prog → (D ⇀ D) that assigns to each
p ∈ Prog a partial input-output function [[p]] : D ⇀ D. A timed programming
language has in addition a function timep(d) assigning a running time (a positive
integer) to each input, such that [[p]](d) is defined if and only if timep(d) is
defined.

We further assume that the data set is closed under pairing, meaning D×D ⊆
D; and that the language has concrete syntax, meaning Prog ⊆ D. Write d1

.= d2

to indicate partial equality: that both sides are undefined, or both sides are
defined and equal.

Interpretation and its overhead. A self-interpreter is a program sint that
satisfies

∀p∀d([[sint]](p, d) .= [[p]](d))

The interpretation overhead can be measured by the ratio

overheadsint(p, d) = timesint(p, d)/timep(d)

In general practice, a self-interpreter will satisfy

∀p∃c∀d( overheadsint(p, d) ≤ c )

that is, interpreting a program incurs (at most) a slowdown of a factor of c
in relation to running the program natively. Factor c can depend on p, so the
overhead is program-dependent in general. Typical causes of program-dependent
overhead can be the need for the interpreter to look up variables in a run-time
store, or to find the target of a function call or a goto command.
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We say that the self-interpreter has program-independent interpretation
overhead if the overhead does not depend on the program p, that is, the following
holds (note the changed order of the quantifiers):

∃c∀p∀d( overheadsint(p, d) ≤ c )

Such an interpreter is called “efficient” (see e.g. [16, Def. 19.1.1]). There exist ef-
ficient self-interpreters, e.g., for structured programs with only one variable. This
has been proven in [14,16,2,24] where it is shown to lead to a complexity-theoretic
linear hierarchy theorem: that even within linear time, for such a language, in-
creasing an allowed running time bound properly increases the class of decision
problems that can be solved within the given bound.

Specialisation and optimality. A program specialiser is a program spec that
satisfies

∀p∀s∀d([[[[spec]](p, s)]](d) .= [[p]](s, d))

We call [[spec]](p, s) the specialised program, and denote it for short by ps. In
general practice, the result of program specialisation will satisfy :

∀p∃c′∀s∀d( speedupp(s, d) ≥ c′ ) where speedupp(s, d) =
timep(s, d)
timeps(d)

The point of specialisation is speedup: ps may be substantially faster than p.
The optimality criterion arose as a precise criterion for being able to state

that a partial evaluator is “good enough”, that is, able to remove as much static
overhead as can reasonably be expected. This criterion is rather vague, but
as specialisers have been much applied to program interpreters as well-known
examples of programs with significantly large static overheads, the following
more precise—and ambitious—criterion can be stated: Given a self-interpreter
sint, the specialiser should ideally be able to remove all interpretation overhead.

Technically, this can be formulated as follows: given a program p, construct
program p′ = [[spec]](sint, p) by specialisation. It is straightforward to see that
this transformed program is semantically equivalent to p, i.e., that [[p′]] = [[p]].
The specialiser is called optimal (Definition 6.4 of [18]) if p′ is always at least as
fast as p, that is, for all input data d we have

timep(d) ≥ timep′(d)

Another way to say this is:

speedupsint(p, d) ≥ overheadsint(p, d)

In words: p′ suffers from none of the overhead that was introduced by use of the
interpreter sint.

This goal, while often stated, is not often achieved. Remark: optimality is
more a property of the strength of the specialiser than of the self-interpreter.
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2 Designing LOOP

Our two goals: program-independent interpretation overhead and optimal spe-
cialisation. The program-independent requirement on interpretation overhead
is quite stringent: It rules out the use of an unbounded number of program
variables as it would take program-dependent time to search the store or value
environment; and it also rules out the use of unstructured control such as goto or
calls to named functions, as these would also need program-dependent searches
in the program symbol table. One step to circumventing these difficulties is to
use an imperative language with structured control. Another step is to follow
the LISP/Scheme/ML tradition of tree-structured data, and to limit programs
to have at most a single variable with only one leaf value N (nil). Perhaps sur-
prisingly this does not cause any loss of expressiveness in the sense that all
Turing-computable function may still be computed; in addition, the restriction
to one variable does not have violent effects on asymptotic program running
times [14,2,24]. We follow this principle in our design of our language LOOP ,
admitting at most a single variable, X, to be accessed by any program.

Specialisation and loop unfolding Specialisation has two dimensions: data and
control. The data aspect is classically handled using a division: a classification
of the store (the program’s run-time data) into static parts and dynamic parts.
In the present context where the store contains only one variable, the division
identifies each data operation on a part of the current value of X as either static:
to be computed at specialisation time; or dynamic: to be used to generate residual
code. The main specialisation technique for data amounts to large-scale constant
propagation. We use an analogous technique, adapted to tree-structured data.

The control aspect is more tricky. In most of the specialisers in [18] (the
exception being lambda-mix) a program point in the residual program is a pair
(pp, vs) where pp is a program point in the subject program, and vs is a tuple of
static data values. Any control transfer from a program point pp is specialised
into residual form: goto (pp, vs), i.e., an unstructured goto statement.3

Alas, such a solution is incompatible with our goal of efficient interpreta-
tion, as it requires considerable program-dependent overhead to interpret a goto
statement. Hence we restrict the LOOP language to structured loops.

A tricky point about specialisation: write subject,...⇒ residual to mean
that a subject command, in the presence of specialisation-time information ...
about static values, is transformed into a residual command. Then the following
is a plausible but incorrect transformation rule:

E, ... ⇒ E′ C, ... ⇒ C′

while E do C, ... ⇒ while E′ do C′

Interestingly, this familiar-looking context rule is incorrect for specialisation.
When execution reaches the end of the loop body C, static data may not have
3 The specialised program points (pp, vs) are kept track of during specialisation time

by means of the “pending list”, implementing the set poly ([18], e.g., Section 4.5).
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the same values as they had at the entry to the loop. Thus in the residual
(specialised) program the loop does not return to the same point as in the
subject program (!)

To see the need for care, consider a simple imperative language with a while-
loop and the following example where variable s is static and d is dynamic.

s := 1;

while( d <> 0 ) do

{ if( s = 1 )

then C1; s := 2

else if( s = 2 )

then C2; s = 0

else C3

}

Since s is statically determined all the ifs can be handled at specialisation time.
Following the inference rule above the code would be specialised to

while( d <> 0 ) do C1

This is clearly wrong as no account is taken of the changing value of s.
A solution: apply the context rule yielding while E′ do C′ only if we are

certain that static values are the same at entry to and exit from C′. Technically
this may be done by annotating each “repeat point” (a program point in the
loop where control is returned to the beginning of the loop) as residual (not to
be unfolded) only when this property holds.

An added benefit of an explicit representation (and annotation) of repeat
points is that we may allow unfolding of loops for which static data get smaller
(see also [26]), and[18] Section 5.5.1) and that we may avoid both general gotos
and the “pending list” as a specialiser can be guided by the now-explicit control
flow.

The imperative language LOOP and its self-interpreter. Guided by the remarks
above, our subject programming language has programs with a single variable
X; separated control and data flow; and explicit loop returns. The result is
computationally and efficiency-wise equivalent (up to small constant factors) to
the usual WHILE language of [16], but easier to manage and analyse.

LOOP syntax is as follows (C = command, E = expression, V = value).
Values are binary trees with only a single atom N (pronounced “nil”), for exam-
ple, v = (N,(N,N)). Operators: cons builds a tree, hd and tl deconstruct, =?
tests for equality, and value N is read as falsity in if and (the result of) =?. The
single program variable is called X.

C ::= X := E | C1 ; C2 | loop{C} | if(E) then{C1} else{C2} | repeat
E ::= X | V | hd E | tl E | cons E1 E2 | =? E1 E2

V ::= N | (V1, V2)

Semantics: command repeat transfers control to the nearest enclosing loop; all
else is as expected.
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The familiar while construction can be paraphrased by:

while E do C ≡ loop{if(E)then{C; repeat}else{X:=X}}

Self-interpretation of LOOP . Self-interpretation is straightforward and details
are thus omitted from this short abstract. Constant-overhead interpretation of
the loop{C} construction is done by pushing C on a separate “loop stack”, us-
ing the stack top when interpreting repeat, and popping the stack if control
reaches the end of C without a repeat command. Experiments using an imple-
mentation in ML showed that an interpreted program runs around 200 times
slower than direct execution when compared using unit cost timing. Symboli-
cally, timesint(p, d) ≥ 200 · timep(d).

But the specialiser will be seen to be optimal, so timep(d) ≥ timesintp(d),
i.e., all interpretation overhead is removed by specialisation. This implies that
specialisation gives very high speedup. Indeed, by the definition of Section 1:

speedupp(d) =
timesint(p, d)
timesintp(d)

≥ 200

3 Specialisation of LOOP

An important insight: since the language uses only one variable, the entire store
can be represented by a single expression. We can then at specialisation time
maintain all static store changes occurring between dynamic store updates effi-
ciently in an “accumulator” expression.

As seen earlier, specialisation of loops is tricky and engenders a need for
explicit annotation of “repeat” statements. To cope with this we add to the
source program annotations that carry information to direct the specialisation.

Two-level annotated LOOP programs We give a very brief account of the 2-level
annotation [18, Section 5.3] used, details can be found in [11]. The annotations
add a static (s) or dynamic (d) tag to each assignment (:=) and conditional
(if). Tagging a command as dynamic will make the command appear in the
residual code. An assignment := is marked static if the the right-hand side of the
assignment only involves lookups in parts of X known to be static. The dynamic,
hence unknown, parts of X may be freely copied by giving a reference to their top
node in the tree. For example, if the left subtree is dynamic we may statically
compute hd( X ) but not hd( hd( X ) ). Conditional commands if (E) then
{C1} else {C2} are marked as static if E can be computed at specialisation
time.

Expressions may be extended with tag lift or static. The tag lift marks
an expression part whose value is static, and will be transferred into the residual
program. Tag static marks an expression part that does not depend on the
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dynamic input.

C ::= C1;C2 | loop{C} | X :=s E | X :=d E| ifs(E)then{C1}else{C2}
| ifd(E)then{C1}else{C2} | repeat | unfold | duplicate

E ::= X | V | cons E1 E2 | =? E1 E2 | hd E | tl E | static E | lift E

V ::= N | (V1,V2)

The crux of specialisation of LOOP is the repeat command; this command
may be annotated in one of three ways:

1. Dynamic: generate a residual repeat. Annotated form: repeat. (As re-
marked above, this is only semantics preserving if static data are unchanged
in the loop; otherwise, incorrect residual code will be produced.)

2. Static duplicate: generate a copy of the entire enclosing loop (not just its
body). Annotated form: duplicate. This is necessary to handle the interpre-
tation of a loop command, which should result in a residual loop. In general
this is required when the size of the static data increases.

3. Static unfold: replace repeat by the body of the loop. Annotated form:
unfold. (This is generally semantics-preserving, and terminates if static data
has properly decreased in size since the beginning of the loop.)

To enable aggressive specialisation, we perform a number of program trans-
formations to turn the source program into a semantically equivalent program
better suited for specialization. Consider the following case and two transforma-
tions:

Loop with successor Transformation I Transformation II
;

loop

...

repeat

C1 C2 ...

repeat

C

;

if

E C1 C2

C3

⇒ if

E ;

C1 C3

;

C2 C3

;

loop

C1

C2

⇒ loop

;

C1 C2

The tricky point is how to specialise the code marked C after specialisation of
the loop. A simple program transformation can be performed to turn the source
program into an equivalent program where the loop does not have a successor.
Concretely, we use a suite of various transformations to alleviate this problem,
essentially by moving the code following certain commands like loop or if inside
the loop or if command.

Note that while Transformation I is always applicable, Transformation II
may not be performed when execution of C2 could end in a repeat: moving a
repeat inside a loop may clearly change the semantics of the program, hence
should be disallowed.
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We denote the process of applying the transformations outlined above (plus
numerous terminating small optimisations such as hd(cons E E′) = E, etc.) by
normalisation. The normalisation process has been formally proven to terminate;
we refer the reader to [11] for details.

The various phases of the specialisation of program p to static data s are:

s
annotate normalize specialize

normalize prune

p

After the specialiser generates code by a second application of normalisa-
tion, further improvements are done. The final phase is pruning. Its purpose:
straightforward specialisation may generate “dead” parts of the store that are
never referenced by the residual program. Worse, as the store consists of a single
variable, these dead parts may cause a slowdown in the residual program, since
unnecessary store operations may be needed to get to the live parts. To keep
the specialisation conceptually simple, we have chosen to perform the removal of
dead parts in a separate phase called pruning ; we again refer the reader to [11]
for details. The pruning serves a purpose similar to Romanenko’s arity raising
[23,22].

Our specialiser performs two tasks while scanning its subject program:

– Generate residual code for dynamic parts of the subject program
– Between points where code is generated, maintain an accumulator expression

that sums up the effect of the static program computations since the last
point where residual code was generated.

Example To illustrate how the accumulator expression is used to keep track of
the static changes to the program, the simple example in the left column of the
table below is used. The left branch of X is assumed to be static and the right
branch is dynamic. The example uses integers, +, and - as shorthand for easily
defined encodings of integers and the successor and predecessor functions.

Annotated subject code accumulator Residual code

X
X:=s cons(3,X); cons(3,X)
X:=s cons(hd(X)+2,tl(X)); cons(5,tl(X))
X:=d cons(hd(X),tl(X)-1); X X:=cons(5,tl(X)-1)
X:=s cons(hd(X)-1,tl(X)) cons(4,tl(X))
X:=d cons(hd(X),tl(X)-2) X X:=cons(4,tl(X)-2)
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4 Experimental results

Experiments were performed, divided into a number of runs, each representing
different configurations of specialisation, with or without involvement of the self-
interpreter:

Computer runs I, II, III, IV, V, VI
I: out := [[p]](s,d)
II: out := [[sint]](p,(s,d))
III: out := [[sint]]((sint,p),(s,d))
IV: out := [[[[spec]](p,s)]](d)
V: out := [[[[spec]](sint,p)]](s,d)
VI: out := [[[[spec]](sint,sint)]](p,(s,d))

For each run, a suite of different input programs p were considered, in partic-
ular, two versions of the append function, a program for lexicographic ordering,
and four instances of the string matching problem using a naive string matcher.4

The timing results for all experiments are given below. Timing figures count
1 for each primitive operation. Times for runs IV, V, VI are for the outermost
[[ ]], i.e., they do not include the time to do specialisation.

Run→ I II III IV V VI Ohead Ohead Speedup Optim
Program↓ II

I
III
II

I
IV

I
V

append 103 19526 4182587 6 103 19526 190 214.2 17.17 1.0
append2 107 20385 4366607 105 107 20385 191 214.2 1.02 1.0
lex 131 24723 5301189 33 131 24723 189 214.4 3.97 1.0
string 1 637 131922 28287715 291 637 131922 207 214.4 2.19 1.0
string 2 21 4121 882810 2 21 4121 196 214.2 10.5 1.0
string 3 115 23682 5077711 55 115 23682 206 214.4 2.09 1.0
string 4 478 98310 21078960 189 478 98310 206 214.4 2.53 1.0

The experimental runs back our claim of optimal specialisation on substan-
tial programs. Specialising programs to static data yields speedups as seen in
the Speedup column showing the ratio of the execution times of columns I and
IV. The column Optim shows the relation between the time for direct program
execution (I) and the speed of the result of specialising the self-interpreter (V).
For the final run (VI) we expect the specialisation of the interpreter with itself
to yield an interpreter. Again for optimality this interpreter must run as fast as
the original interpreter. The unshown comparison of VI/II shows this to be true.

If the specialiser is optimal the execution time of the specialised interpreter
should be at least as fast as direct execution. This is the case for our specialiser.
Even though the the specialised interpreter’s execution time turned out to be

4 Ideally the specialisation of the string matcher should produce code equivalent to
the Knuth-Morris-Pratt algorithm for string matching. This is not the case here, but
the specialisation still provides a substantial speedup.
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the same as the time for direct execution, examination of the code produced by
the specialiser reveals a program that is not identical to the one the interpreter
is specialised to.

Further evidence that we succeeded in our overhead goal is that the inter-
pretive overhead (ratios of columns II/I and III/II) are nearly constant over a
wide range of program sizes, even over double self-interpretation (run III).

5 Future work

The semantic basis for specialisation needs to be better formulated, and its cor-
rectness proven. Ideally, optimality could be proven (beyond the fairly extensive
pragmatic results of the previous section). Further, it would be good to re-express
the ideas using a more general store; the constructions we used don’t seem to
have a fundamental connection with the restriction to one-variable programs.

Another issue concerns program annotation: a binding-time analysis has yet
to be devised and implemented. The current status is that all test programs were
hand annotated (including the self-interpreter, a tricky job). This establishes
that the two-level language is expressive enough for nontrivial specialisation.
However, a better formal understanding of annotated programs is needed before
the process of annotating a program can be completely automated. We aim to
do so, once the two-level semantic issues are better understood.
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Abstract. The development of a language for algebraic computation
actually needs a specific computation model that supports typical be-
havior of formula manipulation. For this purpose an “intentional” model
with suspended computations was developed, and language FLAC with
specific modularity is an implementation of the model.

The development of a language for algebraic computation actually needs a
specific computational model that supports typical essential features of algebraic
computation.

The base of the model is the concept of suspended computations, that regards
all functions as partial ones, and result of computation of f(x0), that is a call of
function f at point x0, specifically depends on the domain of f . It is fundamen-
tally, that if x0 /∈ Dom(f) then the function call f(x0), in spite of conventional
approach, is suspended, i.e. function f is extended at the point x0 by so called
“intensional”, that is a ground term f(x0).The intensional is appended to the
set of values, and the computation continues on the extended set of values.

A reason for the model is substantiated by examples of regular means for imi-
tation of constructors for numbers and algebraic expressions. For example, num-
ber −1 is regarded as an intesional, arisen as a suspension of function subtract
for naturals in expression subtract(0,1). Similarly 1/2 is the same for natu-
ral function divide: divide(1,2); the imaginary number I is intensinal, arisen
for real function sqrt at the point −1. And finaly, the polynomial x + 1 is the
intensional of the function add.

The FLAC language [1] (is an abbreviation for Functional Language for Al-
gebraic Computation) is a functional language much similar to Refal [2] with
conventional elements of the languages like terms, variables, pattern matching,
alternation and recursion. Any function defined in a program is regarded as
partial one, and programming in FLAC is extending the functions.
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Here is a syntax of a simple version of the language.

Program = Sentence | {Sentence";"}

Snt: Sentence = Term "=" Expression

T: Term = Simple-Term | Compound-Term
St: Simple-Term = Simple-Ground-Term | Variable
SGt: Simple-Ground-Term = Identifier | Number | Literal

Ct: Compound-Term = Head "(" List ")"
H: Head = Name | Term-Variable
Name: Name = Identifier
L: List = Term | Term {"," List}

Gt: Ground-Term = Simple-Ground-Term | Compound-Ground-Term
CGt: Compound-Ground-Term = Name "(" Ground-Term-List ")"
Gl: Ground-Term-List = Ground-Term {"," Ground-Term-List}

V: Variable = Term-Variable | List-Variable
Vt: Term-Variable = "&" Identifier
Vl: List-Variable = "#" Identifier

Id: Identifier
Num: Number
Liter: Literal

The following is the famous factorial function written in FLAC:

fac(0) = 1;
fac(&n) = &n * fac(&n-1);

The most specific feature of the language is to support suspended compu-
tations. Any ground term is regarded as functional call and is trying to be
converted. If a ground term t calls a function f outside its domain then the term
t is suspended and converted to a ground term t′ which denotes the result of
suspension of the term t. For the sake of usability the t′ is represented literally
by the ground term t itself. As a result of the suspension the term t′ is appending
to the set of values for further computations. Actually, we have to consider every
resulted ground term as an intensional of suspended computation.

Program is a sequence of definitions. The sentences of a function description
give alternative patterns, that are tried one by one. To convert a term f(a) pat-
tern matching process starts with the first sentence of description of the function
f. Each Term-Variable can take only one Ground-Term, and List-Variable can
take Ground-Term-List, when matching from left to right. If it is impossible to
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match the current sentence, the process restarts from the beginning of the next
sentence.

For example, let function apply applies first argument to each element of the
list of the second argument, that is the compound ground term with the name
Terms:

apply(&f,Terms(&x,#l)) = &f(&x), apply(&f,Terms(#l));
apply(&f,Terms(#l)) = #l;

Compound ground terms are also used for data type representation: the name
of a compound term is used as the name of type. For example, matrix

A =
(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)
may be represented as:

A = Mat(2,2, Row(cos(fi), -sin(fi)), Row(sin(fi), cos(fi)));

Each sentence of description of function f defines also the domain Df
i , and

so the function has the domain Df =
⋃
i

df
i .

Usually, programming systems have modularity. Conventional tradition al-
lows make definition of one function only in one of composed modules. However,
it is not convenient for algebraic computations, because mathematical tradition
dictates necessity of extension of earlier defined operations for new mathematical
objects.

FLAC has modularity that allows a once defined function to be extended
in other modules. So, if function f has definitions in modules m1, . . . ,mn that
are composed into a single-module M , then the domain of the function f is
Df

m =
⋃
k

Df
mk

.

For instance, if functions + and * were before only numeric ones, and we have
made new module with defined matrix operations named addmat and mulmat,
then we can just add extra definitions:

Mat(#l1) + Mat(#l2) = addmat(Mat(#l1), Mat(#l2));
Mat(#l1) * Mat(#l2) = mulmat(Mat(#l1), Mat(#l2));

and now use it in algebraic manner:

B = A ∗A + M ;

Moreover, on modules m1, . . . ,mn may be defined a partial order with cor-
responding semantics of the function f on each branch of the tree.

Though resulted domain of f does not depend on order of modules in M ,
but result of computation may essentially depend on it.
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Abstract. An extension of Turchin’s supercompilation from functional
to object-oriented languages as it is implemented in the current ver-
sion of a Java supercompiler (JScp) is reviewed. There are two novelties:
first, the construction of the specialized code of operations on objects
is separated into two stages—residualization of all operations on objects
during supercompilation proper and elimination of redundant code in
post-processing; and second, limited configuration analysis, which pro-
cesses each Java control statement one by one using width-first unfolding
of a process graph, is used.
The construction of JScp is based on the principle of user control of the
process of supercompilation rather than building a black-box automatic
supercompiler. The rationale for this decision is discussed.
Keywords: specialization, supercompilation, object-oriented languages.

1 Introduction

Turchin’s supercompilation [15] and related metacomputation technologies—
partial evaluation, deforestation, mixed computation, etc.—for program special-
ization, fusion, slicing, inversion, etc., although being under development for
more than three decades, are still in a state of infancy from the practical view-
point. One may ask, why is it taking so long?

One evident reason is that time is always needed for a method to become
mature enough to be embedded in tools and systems and used by rank-and-file
programmers. However, from our viewpoint, there are essential reasons that have
not allowed things to go this way quickly.

Supercompilation belongs to a new kind of program transformation tech-
nology which oversteps the limits of black-box program optimization used in
widespread optimizing compilers. When a method is built in a subsystem that
is almost invisible from outside, users accept it and it is put into practice easily.
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a and

No. 08-07-00280-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.
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To be “invisible”, a method must work quickly—preferably in linear time on
the size of code. The commercial compiler developers consider this requirement
essential. However, such limitation does not allow for unbounded evolution of
the intelligence of program transformers.

In the early years of supercompilation development there was a dream of
fully automatic supercompilers that could kind of “solve all problems” (note
this is similar to the dream and belief in strong artificial intelligence in the
same decades). But now, despite the evident progress in supercompilation and
other metacomputation methods, we should adopt another viewpoint, another
paradigm. Unbounded evolution is possible only in human-machine systems, the
human performing the role of a metasystem [14].

Often the human control is considered as an interim measure with the goal to
fully automate the control later and to commit it to the machine. It is indeed a
good approach. In particular, it simplifies the first steps of system development
by avoiding complex and possibly unsolvable problems in early stages. The only
difference we argue for is that full automation should not be the ultimate goal.
The goal must be careful division of labor between machine and human, putting
at the machine level what it can do better, and on the human level what he
can do better, and permanent movement of activities from human to machine,
preserving the (meta) role of the human.

Such an approach requires development of new specific human-machine in-
terfaces, and redevelopment of program transformation methods in such a way
that they are comprehensible and controllable by the user.

Based on these considerations, from the very beginning, the Java supercom-
piler (JScp) [4,6] has been developing as a user-controlled system rather than an
automatic supercompiler.

We have not yet constructed JScp as a convenient system for a user with an
appropriate graphical user interface (GUI). At the current stage, this principle
influenced the development in such a way that we were not afraid of introducing
options in all places of supercompilation algorithms where there are degrees
of freedom. Now the options are typed in a separate advice file which is an
additional input to JScp. It is not easy to use JScp now. This is the main reason
why we cannot suggest it to ordinary users. In future, a special GUI will have
to be developed. This work has been just initiated and it is too early to discuss
this topic in this paper in more detail.

Concluding the introductory part, I would like to share a strong impression
based on experiments with the Java supercompiler that from the beginning of
the Millennium we have practically no limitations from the hardware side for
performing research and experiments in the area of metacomputation. The situ-
ation is quite opposite to what we had in the previous decades. Now we see that
this was an objective reason for the slowness of the development of the meth-
ods. The few megabytes of memory that were not available in the 70s and were
enough in the mid to late 80s to achieve self-application of specializers based on
the method of partial evaluation [5,11], were totally insufficient to do what we
do now. On the other hand, the modern gigahertzes and gigabytes give us an
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impressive freedom of experimenting, and in the nearest future we will observe
the burst of results in our area.

2 Design Decisions of Java Supercompilation

2.1 User Control

As it was mentioned above, the Java supercompiler (JScp) has been developing
as a user-controlled system rather than an automatic supercompiler. Let us turn
to more tangible reasons for the decision:

– The project was initiated more than a decade ago, when research supercom-
pilers had not yet shown themselves to be practical tools, while our goal
was ambitious: to attack a practical language Java. There was not enough
confidence in the possibility of automatic supercompilation at all, since ex-
perimental supercompilers (first of all, the V.F. Turchin’s one [17,18]) were
still weak.

– The main foreseeable problem was, is, and will be, scalability of the methods
to large industrial code. Supercompilation as well as other relative methods
have exponential (and perhaps even more) complexity. The user control is an
effective (and perhaps, the only practicable) method to beat the exponential
complexity down.

– The JScp project was a venture into supercompilation of the new object-
oriented world, and a lot of experimenting to test and tune the methods was
required.

Since then A.P. Nemytykh continued and has completed the development of
the V.F. Turchin’s supercompiler for the functional language Refal [10] and its
practical usage has begun [9]. To a large extent, it may be considered as an
automatic supercompiler. It solves a reasonable class of problems in almost au-
tomatic mode.1 Nevertheless the mentioned uncertainties and risks remain, and
we continue considering user-controlled rather than black-box supercompilers
the high road of their development.

2.2 First Milestone

Construction of a supercompiler for such a cumbersome language as Java should
be a stepwise process. Our first goal was to find such a subset of the supercom-
pilation method “wheels” that is sufficient to implement the first supercompiler
that has practical sense, kind of first “milestone”. After it is achieved, we can
get feedback from experiments with realistic code, and start the development of

1 The combination of particular features implemented in it—negative information
propagation at the level of driving and combination of V.F. Turchin’s stack “whis-
tle” [16] and the “whistle” [13,17] based on Kruskal’s homeomorphism embedding
[8]—have proven themselves to be highly successful.
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convenient means to control the supercompiler by the user (which is a new area
of research). We consider the JScp project being just at this stage.

In general outline, the current version of JScp (downloadable from the project
site [6]) implements the following features:

– quite complete driving, which is, in particular, capable of rigorous specializa-
tion of operations on mutable objects. We observed that underdevelopments
in driving noticeably reduce the depth of specialization. Nevertheless, some
well-studied features of driving are not implemented yet: there is no nega-
tive information propagation and contractions after a test for equality are
performed only for primitive data (and this feature is switched off by de-
fault). We observed these features are not as important than plain positive
information propagation;

– limited configuration analysis. We gave up implementing the traditional con-
figuration analysis that traversed all processes by driving and performed the
operations on configurations to compare them, to loop-back, to generalize,
to split, and thus constructed the residual graph. The main reason for this
decision is that it is too monolithic: nearly a dozen of Java control state-
ments must be fused into the algorithm of unfolding and folding the graph
of configurations. For the first version of JScp we have made another decision
where each control statement is driven, analyzed and residualized separately.
This entailed the change from depth-first traversal of processes and configu-
rations to width-first : for each control statement, its graph of configurations
until the end of the statement is recursively built from the graphs of nested
statements. This allowed us to elaborate the subtleties of each control state-
ment one by one. Otherwise we did not manage the qualitative complexity
of Java notions in the first version of JScp.

Thus there are two main differences in the method of supercompilation of Java
implemented in the current version of JScp from the traditional supercompilation
of functional languages:

– driving of operations on mutable objects (discussed in more detail in the
next section). This is applicable to all object-oriented languages; and

– new method of configuration analysis of Java control statements by width-
first unfolding of the graph of configurations and recursive constriction of
residual code from the residual code of nested statements. (This is not fur-
ther discussed in this paper.) This method is applicable not only to object-
oriented languages, but to all imperative languages with a sophisticated set
of control statements.

3 Driving of Operations on Objects

The most notable distinction of supercompilation in JScp is driving of objects.
An important feature of functional languages which is not preserved in object-

oriented ones, and on which supercompilers and partial evaluators rely, is that



An Approach to Supercompilation for Object-oriented Languages 47

values partially known at specialization time are easily residualized (“lifted”):
a representation of a value (possibly with configuration variables) in a configu-
ration can always be compiled into code producing the value at run-time, each
execution of the code or its copies producing equal values.

Objects do not possess this property. It is no problem to represent the result of
construction of an object as a result of driving of an instance creation expression
new C(arguments), where C is a class name, and to store it in the heap part of a
configuration. It is not a problem to perform all operations on the representation
of the object at supercompilation time. But it is impossible to generate the code
that reconstructs the object at run-time. One of the reasons is that this code
would generate different instances each time it is executed.

In “off-line” partial evaluators for object-oriented languages the preliminary
binding time analysis supplies each instance creation expression with an anno-
tation telling what to do: either to residualize the new expression, or not to
residualize it and instead possibly residualize some of its fields as local variables.
The necessity to take this decision in advance, when the values are completely
unknown, restricts the depth of specialization. The preliminary analysis gives
approximate information about the future of the objects.

3.1 Residualization of Operations on Objects

In “on-line” supercompilation, when driving meets an instance creation expres-
sion new C(...) it does not know whether the new object will be needed at
run-time, or only some information from its fields. Hence, it is forced to always
residualize it. The representation of the object is kept in configurations in order
to perform operations on it at supercompilation time. If all information about
the object is known then all operations will be performed by the supercompiler.
Simultaneously all operations are residualized (except reading known values or
configurations variables from fields) in order to create an object with the equiv-
alent state at run-time.

In such a way, correct residual code is built but it contains a lot of redundant
operations (see example in Fig. 3 below). Even local variables, which keep refer-
ences to unused objects, may be unneeded. Often objects can be transformed to
local variables that keep the values of part of fields needed at run-time.

Such transformation is performed in JScp by post-processing, which propa-
gates information backwards from the points of use of objects to the points of
their creation, from the future to the past.

3.2 Redundant Code Elimination by Post-processing

To eliminate redundant variables and code, the well-known methods from op-
timization compilers could be used. One might expect that an optimizing Java
compiler can do this work and there is no need to implement this feature in
JScp. However, all methods of redundant code elimination are approximate and
address specific kinds of redundancy. The mainstream optimizing compilers are
tuned for code written by humans or generated by preprocessors. It is unjustified
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to expect that they can find the redundant code produced by a supercompiler
and perform expected transformations such as conversion of objects to local
variables representing their fields.

Another reason why we have implemented a special-purpose post-processing
analysis for redundant code elimination in JScp is that it is important to produce
readable residual code—in particular, to support the user control that we argue
for. (Compare the code in Fig. 3 and Fig. 4.)

The current version of post-processing analysis in JScp is a first approxima-
tion. It can be improved in future versions, but perhaps at the expense of time
spent for analysis. The analysis is monovariant with respect to code, that is, all
operations on reference variables are considered as an unordered set. One deci-
sion is made for each residual instance creation expression: whether to residualize
it or not. If the instance is residualized, no fields are moved to local variables,
although this may be beneficial in some branches of code.

Our experiments with supercompilation of realistic code show that such ap-
proximate analysis and transformation behaves rather well. The majority of
redundant code is eliminated.

4 Example

Consider the famous A.P. Ershov’s example of program specialization of a power
function with respect to a known exponent. The only difference is that we use
complex numbers represented by objects of class Complex (Fig. 1) instead of real
numbers, in order to demonstrate how the two-stage residualization of objects
works.

The program to be supercompiled is shown in Fig. 2. It consists of a general
method toPower, which raises a complex number x to the power of an arbitrary
nonnegative integer n, and a special method toPower3, which invokes the method
toPower with n = 3.

The task for JScp is to supercompile method toPower3. In this case the JScp
command line looks as follows:

jscp ComplexPower.java Complex.java -m toPower3 -aggr -invoke

where
– arguments ComplexPower.java and Complex.java are the source Java file

names;
– option -m toPower3 tells JScp to supercompile method toPower3 from the

first .java file;
– options -aggr and -invoke control supercompilation: the first one means

using the standard set of “aggressive” options and the second one means un-
conditionally invoking (inlining) all method invocations at supercompilation
time.

In Fig. 3 and Fig. 4 the actual output from the current version (0.1.99) of
the Java supercompiler, which can be downloaded from the project site [6], is
shown.
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public final class Complex

{

public final double re;

public final double im;

public Complex(double real, double imag)

{

re = real;

im = imag;

}

...

public Complex times(Complex b)

{

Complex a = this;

double real = a.re * b.re - a.im * b.im;

double imag = a.re * b.im + a.im * b.re;

return new Complex(real, imag);

}

...

}

Fig. 1. A fragment of class Complex

public class ComplexPower

{

public static Complex toPower(Complex x, int n)

{

Complex res = new Complex(1, 0);

while (n != 0) {

if (n % 2 == 1)

{ n=n-1; res = res.times(x); }

else

{ n=n/2; x = x.times(x); }

}

return res;

}

public static Complex toPower3(Complex x)

{

return toPower(x, 3);

}

}

Fig. 2. Source class ComplexPower and method toPower3 to be supercompiled
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public static power.Complex toPower3(final power.Complex x_1)

{

//{ 1 power.ComplexPower.toPower(power.Complex x_1, int 3)

power.Complex res 2 = new power.Complex(1D, 0D);

//{ 2 power.Complex res_2.times(power.Complex x_1)

double re_5 = x_1.re;

double im_6 = x_1.im;

power.Complex res 7 = new power.Complex(re_5, im_6);

//} 2 power.Complex res_2.times(power.Complex x_1)

//{ 2 power.Complex x_1.times(power.Complex x_1)

double double_12 = re_5 * re_5;

double double_13 = im_6 * im_6;

double real_14 = double_12 - double_13;

double double_15 = re_5 * im_6;

double double_16 = im_6 * re_5;

double imag_17 = double_15 + double_16;

power.Complex res 18 = new power.Complex(real_14, imag_17);

//} 2 power.Complex x_1.times(power.Complex x_1)

//{ 2 power.Complex res_7.times(power.Complex x_18)

double double_23 = re_5 * real_14;

double double_24 = im_6 * imag_17;

double real_25 = double_23 - double_24;

double double_26 = re_5 * imag_17;

double double_27 = im_6 * real_14;

double imag_28 = double_26 + double_27;

power.Complex res_29 = new power.Complex(real_25, imag_28);

//} 2 power.Complex res_7.times(power.Complex x_18)

//} 1 power.ComplexPower.toPower(power.Complex x_1, int 3)

return res_29;

}

Fig. 3. Residual method toPower3 before post-processing (underlined variables
are redundant)

public static power.Complex toPower3(final power.Complex x_1)

{

final double re_5 = x_1.re;

final double im_6 = x_1.im;

final double real_14 = re_5 * re_5 - im_6 * im_6;

final double imag_17 = re_5 * im_6 + im_6 * re_5;

return new power.Complex(re_5 * real_14 - im_6 * imag_17,

re_5 * imag_17 + im_6 * real_14);

}

Fig. 4. Residual method toPower3 after post-processing
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Figure 3 contains the residual code before post-processing (which is output
by option -raw). Notice the residual instance creation expressions, whose values
are assigned to local variables with underlined names. The new expressions are
redundant, since the underlined variables do not occur elsewhere. In this simple
case the redundant variables are found even by the algorithm implemented in
the Eclipse development platform. Its GUI shows this by similar underlining.

Figure 4 shows the final residual code. Post-processing also performs various
equivalent transformations of code to make it more readable.

5 Conclusion and Related Work

The main contributions of our work on supercompilation of object-oriented lan-
guages are as follows:

– the method of supercompilation of code with mutable objects based on sep-
aration of the process into two stages: first, during driving and supercom-
pilation proper, (almost) all operations on objects are residualized; second,
thus obtained redundant code is eliminated by a specially developed post-
processing;

– practical demonstration that a certain post-processing analysis is sufficient
to eliminate the overwhelming majority of the redundant code;

– user-controlled configuration analysis based on width-first unfolding of a con-
figuration graph rather than depth-first one used in existing supercompilers
for functional languages.

To the best of our knowledge, this work is the first attempt to apply supercompi-
lation-like methods to object-oriented languages. It goes without saying that it
is based on previous works of various authors on supercompilation of functional
languages, first of all on the works by V.F. Turchin. Before we have undertaken
a venture of supercompilation of Java, it was very important for us to extract
its essence from the gory details. The works [3] and [1] on simplification and
clarification of basic notions of supercompilation were the most important for us
to become optimistic.

The closest line of research is specialization of programs in object-oriented
languages by partial evaluation. The main problem to be addressed is the same—
evaluation of mutable objects at specialization time. However, the early work
avoided this problem by restricting to immutable objects. Then, the method
was extended to cover more and more parts of object-oriented notions. The
most valuable works are that by U.P. Schultz et al. for Java [12] and a later
one by Yu.A. Klimov et al. for the Common Intermediate Language (CIL) of
the Microsoft.NET platform [2,7], which have extended the “polyvariance” of
binding time analysis almost to the limit and allowed for all computations to be
performed at specialization time when enough data is known.

As usual, supercompilation for object-oriented languages as an “on-line” tech-
nique is capable of performing deeper specialization than “off-line” partial eval-
uation. Experiments with partial evaluators and supercompilers show that ap-



52 Andrei V. Klimov

plication code and libraries often require to be refactored, but the amount of
changes in the case of supercompilation are rather small and reasonable.

Concluding, we would like to say that the results of our development of the
experimental Java supercompiler, the quality and even readability of the residual
code, have exceeded our expectations, and hidden rocks turned out to be smaller
than we were afraid of in advance.
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editors, Static Analysis Symposium. Proceedings, volume 724 of Lecture Notes in
Computer Science, pages 112–123. Springer-Verlag, 1993.

4. Ben Goertzel, Andrei V. Klimov, and Arkady V. Klimov. Supercompiling Java
Programs, white paper, 2002. http://www.supercompilers.com/white paper.shtml.

5. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

6. Andrei V. Klimov, Arkady V. Klimov, and Artem B. Shvorin. The Java Super-
compiler Project. http://www.supercompilers.ru.

7. Yuri A. Klimov. Program specialization for object-oriented languages by partial
evaluation: approaches and problems. Preprint 28, Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences, 2008. (In Russian).



An Approach to Supercompilation for Object-oriented Languages 53

8. Joseph B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95(2):210–225, 1960.

9. Alexei Lisitsa and Andrei P. Nemytykh. Verification as a parameterized testing (ex-
periments with the SCP4 supercompiler). Programming and Computer Software,
33(1):14–23, 2007.

10. Andrei P. Nemytykh. Superkompilyator SCP4: Obschaya struktura (The Super-
compiler SCP4: General Structure). URSS, Moscow, 2007. (In Russian).

11. Sergei A. Romanenko. A compiler generator produced by a self-applicable spe-
cializer can have a surprisingly natural and understandable structure. In Dines
Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation and
Mixed Computation, pages 445–463. North-Holland, 1988.

12. Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Automatic program special-
ization for Java. ACM Trans. Program. Lang. Syst., 25(4):452–499, 2003.

13. Morten Heine Sørensen and Robert Glück. An algorithm of generalization in pos-
itive supercompilation. In J. W. Lloyd, editor, International Logic Programming
Symposium, Portland, Oregon. MIT Press, 1995. (To appear).

14. Valentin F. Turchin. The Phenomenon of Science. Columbia University Press,
New York, 1977.

15. Valentin F. Turchin. The concept of a supercompiler. Transactions on Program-
ming Languages and Systems, 8(3):292–325, 1986.

16. Valentin F. Turchin. The algorithm of generalization in the supercompiler. In
Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation
and Mixed Computation, pages 531–549. North-Holland, 1988.

17. Valentin F. Turchin. Metacomputation: Metasystem transitions plus supercom-
pilation. In Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Dagstuhl
Seminar on Partial Evaluation, volume 1110 of Lecture Notes in Computer Science,
pages 481–509. Springer, 1996.

18. Valentin F. Turchin. Supercompilation: techniques and results. In Dines Bjørner,
Manfred Broy, and Igor V. Pottosin, editors, Perspectives of System Informat-
ics, Second International Andrei Ershov Memorial Conference, Akademgorodok,
Novosibirsk, Russia, June 25-28, 1996, Proceedings, volume 1181 of Lecture Notes
in Computer Science, pages 227–248. Springer, 1996.



A Program Specialization Relation
Based on Supercompilation and its Properties

Andrei V. Klimov?

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
klimov@keldysh.ru

Abstract. An input-output relation for a wide class of program special-
izers for a simple functional language in the form of Natural Semantics
inference rules is presented. It covers polygenetic specialization, which in-
cludes deforestation and supercompilation, and generalizes the author’s
previous paper on specification of monogenetic specialization like partial
evaluation and restricted supercompilation.
The specialization relation expresses the idea of what is to be a specialized
program, avoiding as much as possible the details of how a specializer
builds it. The relation specification follows the principles of Turchin’s
supercompilation and captures its main notions: configuration, driving,
generalization of a configuration, splitting a configuration, as well as
collapsed-jungle driving. It is virtually a formal definition of supercompi-
lation abstracting away the most sophisticated parts of supercompilers—
strategies of configuration analysis.
Main properties of the program specialization relation—idempotency,
transitivity, soundness, completeness, correctness—are formulated and
discussed.

Keywords: specialization, input-output relation, partial evaluation, su-
percompilation, correctness.

1 Introduction

Program specialization is an equivalence transformation. A specializer spec maps
a source program p to a residual program q , which is equivalent to p on a given
subset D of the domain of the program p : q = spec(p, D). The equivalence of
the source and residual programs is understood extensionally, that is, noncon-
structively: p ≈D q if for all d ∈ D : p(d) = q(d) or both p(d) and q(d) do not
terminate. The correctness of specializers is usually proven by reducing it to the
extensional equivalence [4,2,11]:

q = spec(p, D) ⇒ p ≈D q.

? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a and
No. 08-07-00280-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.
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In this paper we define a constructive, intensional relation of specialization,
that is, a relation of equivalence of source and residual programs, which many
specialization methods satisfy, including partial evaluation [5], deforestation [18],
supercompilation [16,17]. Let p 'D q denote such intensional equivalence of a
source program p and a residual one q on a set D of input data values. To
be correct, it must be a subset of the extensional relation, (') ⊂ (≈), that is,
p 'D q ⇒ p ≈D q . The intensional relation provides a shorter way for proving
the correctness of specializers than the extensional equivalence does:

q = spec(p,D) ⇒ p 'D q ⇒ p ≈D q.

The specialization relation is defined in this paper by inference rules in the
style of Natural Semantics [6]. The rules serve as formal specification of a wide
class of specializers. By the nature of Natural Semantics, the specification allows
for automated derivation of specializers as well as checkers of the correctness
of residual programs, which can help in debugging practical specializers. Some
notions (e.g. driving) are defined precisely enough to unambiguously derive the
corresponding algorithm by the well-known methods. Other notions (e.g. gener-
alization and splitting configurations) are defined with certain degrees of freedom
to allow for various decision-taking algorithms and strategies.

The specialization relation is based on the ideas of supercompilation, but
agrees with partial evaluation and deforestation as well. The inference rules
model at abstract level the operational behavior of supercompilers. All essential
notions of supercompilation are captured: configuration, driving, generalization
of a configuration, splitting a configuration, as well as collapsed-jungle driving
[12,13], while abstracting from the problems of algorithmic decisions of when,
what and how to generalize and when to terminate.

In paper [8] a similar specialization relation was presented for the simpler
case of monogenetic specialization [10] where any program point in the resid-
ual program is produced from a single program point of the source program. In
this paper the relation definition is developed further to polygenetic specializa-
tion [10] where a residual program point is produced from one or several source
program points. Monogenetic specialization includes partial evaluation but ex-
cludes deforestation and supercompilation. Polygenetic specialization covers all
of them. For completeness sake, the basic notions and the definition of driving
from [8] are repeated in Section 2, Figs. 6, 7.

The main contributions of the paper are as follows:

– a complete formal definition of what supercompilation is, in form of an input-
output specialization relation, is given;

– several interesting properties that the presented specialization relation obeys
are formulated and related to each other: idempotency, transitivity, sound-
ness, completeness, correctness.

The paper is organized as follows. A simple object language, which is both
the source and target language of specializers, is presented in Section 2.1 together
with semantic domains for interpretation and supercompilation. In Section 2.2



56 Andrei V. Klimov

k ∈ Atom atomic data
x ∈ Data ground data
z ∈ CData configuration data
a ∈ Arg source arguments
d ∈ Prim source primitives
s ∈ Term source program terms
r ∈ Term residual program terms
v ∈ Var source program variables
u ∈ Var residual program variables

and configuration variables
l ∈ LVar liaison variables
f ∈ FName function names
p ∈ Prog source programs
q ∈ Prog residual programs
b ∈ Args argument bindings
c ∈ Contr contractions

∆ ∈ Expl explications
d, s ∈ MConf monogenetic configurations

z |∆ ∈ PConf polygenetic configurations
m ∈ CMap mapping of residual function

names to configurations

k ::= True | False | Nil | . . .
x ::= k | Cons x x
z ::= k | Cons z z | u | l
a ::= z | Cons a a | v
d ::= a | fst v | snd v

| cons? v | equ? v a
s ::= d

| if v then s1 else s2

| let v = s1 in s2

| call f b

Prog = FName → Term
Args = Var → Arg
Contr = Var → CData
Expl = LVar → MConf
MConf = Term
PConf = CData× Expl
CMap = FName → PConf

Fig. 1. Object language syntax and semantic domains

the notion of configuration is introduced. In Section 2.3 the operation of substi-
tution as it is used in this paper is defined. Section 2.4 discusses the supercom-
pilation notion of contraction. Sections from 3 to 5 present the definition of the
specialization relation: in Section 3 the specifics of our definition of the language
semantics and specialization is explained; in Section 4 the semantics and driving
of the language primitives and in Section 5 the semantics and specialization of
control program terms are specified. In Section 6 the most interesting properties
of the specialization relation are formulated and discussed, and in Section 7 we
conclude.

2 Basic Notions

2.1 Object Language and Semantic Domains

Figure 1 contains the definition of the abstract syntax of the object language
together with semantic domains for interpretation and specialization. It is a
simple first-order functional language. It has conventional control constructs if-
then-else, let-in, call, adjusted a bit to make the specialization inference rules
simpler. Figure 2 shows an example of a program and an initial configuration
for specialization.
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rev v1 = loop v1 []
loop [] v2 = v2

loop (v4 : v5) v2 = loop v5 (v4 : v2)

— a program
in Haskell

p = { rev 7→ call loop {v1 7→ v1, v2 7→ Nil},
loop 7→ let v3 = cons? v1 in

if v3

then let v4 = fst v1 in
let v5 = snd v1 in
call loop {v1 7→ v5, v2 7→ Cons v4 v2}

else v2

— the same
program in
the object
language

}

s0 = call rev {v1 7→ Cons A (Cons u1 (Cons B u2))} — an initial term

z |∆ = l0 | {l0 7→ s0} — an initial
configuration

Fig. 2. An example of a program p and an initial configuration

Data. A data domain Data is a constructor-based domain recursively defined
from a set of atoms Atom by applying a binary constructor Cons. The set Atom
contains at least True, False, and Nil.

Any constructor-based domain has the nice property that it can be easily
extended to meta-data without the need for encoding. In particular, a constant
in program code coincides with the value it represents. That is, Data ⊂ Term ,
where Term is the domain of program terms.

Configuration Data. Another extension of Data originates from the need to
constructively represent sets of data values and sets of program states. The ba-
sic method to represent sets is to embed free variables into the representation of
data. In the theory of supercompilation such variables are referred to as configu-
ration variables. The general principle is that a configuration variable, u ∈ Var ,
can occur in any position where a ground value is allowed.

A characteristic feature of supercompilation, which is preserved in our spe-
cialization relation definition, is that configuration variables become residual
program variables.

To specify polygenetic specialization, we use a representation of configura-
tions in form of directed acyclic graphs [12,13], which we define in the next
section and refer to as polygenetic configurations or polyconfigurations for short.
It requires one more extension of the data domain by so called liaison1 variables,
l ∈ LVar , bound variables that link positions in terms to subterms.
1 The term is due to V.Turchin, who suggested the use of such a representation of

configurations in supercompilers in 1970s.
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The data and configuration data domains, Data and CData, and the Term
domain are embedded in each other: Data ⊂ CData ⊂ Term .

Primitives. Data values are analyzed by primitive predicates equ? v a (are
two values equal?) and cons? v (is the value of a variable v a term of the form
Cons z1 z2 ?), which return atoms True or False, and selectors fst v and snd v ,
which require the value of v to be a Cons term and return its first and second
argument respectively.

To avoid dealing with exceptions, we impose a context restriction on selectors
fst v and snd v : they can occur only on the positive branch of an if-term with
the conditional cons? v .

Control. Control terms if-then-else and let-in are the usual conditional term
and let binding respectively. The following restriction is imposed for the sim-
plicity of the specialization definition: the conditional must be a variable v that
is bound to a conditional primitive, equ? or cons?, by an enclosing let term,
e.g.

let v = cons? v1 in . . . if v then s1 else s2 . . .

A program is a finite mapping of function names to program terms.
A function call, which usually looks like f(a1, . . . , an), is written in our

language as
call f {v1 7→ a1, . . . , vn 7→ an}

where v1, . . . , vn are the free variable names of the term that the name f is
bound to in the program.

For simplicity, terms are in the so called administrative normal form, that
is, the arguments of all terms except the let-in term and the then and else
branches of the if term, has trivial form: v ∈ Var or a ∈ Arg .

Notation.

– FVars(t) denotes the set of free variables occurring in term t .
– LVars(t) denotes the set of liaison variables in a term or in a configuration.
– Dom(m) and Rng(m) denote the domain and range of mapping m respec-

tively.

2.2 Configuration

While an interpreter runs a program on a ground data, a specializer runs a source
program on a set of data. A representation of a program state in interpretation
and that of a set of states in specialization is referred to as a configuration. We
follow the general rule of construction of the notion of the configuration in a
supercompiler from that of the program state in an interpreter that reads as
follows: add configuration variables to the data domain, and allow the variables
to occur anywhere where an ordinary ground value can occur. A configuration
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represents the set that is obtained by replacing all configuration variables with
all possible values.

There are two kinds of configurations, which we refer to as monogenetic con-
figurations and polygenetic configurations, or monoconfigurations and polycon-
figurations for short. In our previous work [8] monoconfigurations were actual
configurations. In this work monoconfigurations are used as configurations in
the rules for primitives, and polyconfigurations are configurations in the rules
for control terms. Polyconfigurations comprise monoconfigurations.

Syntactically, a monoconfiguration is a source program term, in which pro-
gram variables are replaced with their values.2

A polyconfigurations is a representation of a program state as directed acyclic
graphs (as in [12,13]). A polyconfiguration can be thought of as obtained from
a monoconfiguration in these steps:

1) decompose a monoconfiguration into a topmost term and some subterms;
2) bind the subterms to fresh liaison variables;
3) put the liaison variables into the topmost term instead of respective sub-

terms;
4) decompose some subterms analogously.

A polyconfiguration is denoted by z |∆, where z is the topmost subterm, and
∆ the binding of liaison variables to terms (monoconfigurations), referred to as
an explication.3 Topmost terms are restricted to z ∈ CData , that is, primitives
and control terms must be picked out (explicated) and put into the binding. As
an example, see the initial configuration in Fig. 2:

z |∆ = l0 | {l0 7→ call rev {v1 7→ Cons A (. . .)}}.

While initial configurations are usually trees, during specialization polycon-
figurations form directed acyclic graphs in general. In the case of the applicative
evaluation order, the polyconfiguration is a call stack. However, the inference
rules do not fix the order of evaluation, and we consider the explication as an un-
ordered set of bindings. Each time we write {l 7→ s}∆, we imply ∆1{l 7→ s}∆2

for some ∆1 and ∆2 such that ∆ = ∆1 ∆2 .
When it is clear from the context what kind of configuration is meant, we say

just a configuration. It is a monogenetic configuration when the rules of driving
of primitives are considered, and a polygenetic configuration in other cases.

2.3 Substitution

To avoid the ambiguity of traditional postfix notation for substitution tθ when
it is used in inference rules (either juxtaposition, or application of substitution),
we lift up the substitution symbol θ and use a kind of power notation tθ .
2 An alternative is to keep program terms untouched and to represent the monocon-

figuration as a pair consisting of a program term and an environment that binds
program variables to their values. Although this representation is more common in
implementations of interpreters and specializers, we prefer to substitute the environ-
ment into the term for conciseness of inference rules.

3 The term is due to V.Turchin.
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− : FName × Prog → Term

f{..., f 7→s, ...} = s

− : Term× (Contr ∪Args ∪ Expl) → Term

zθ = z if z ∈ Atom ∪Var ∪ LVar and z 6∈ Dom(θ)

v{..., v 7→z, ...} = z

Cons a1 a2

θ
= Cons aθ

1 aθ
2

fst v
θ

= fst vθ

snd v
θ

= snd vθ

cons? v
θ

= cons? vθ

equ? v a
θ

= equ? vθ aθ

if v then s1 else s2

θ
= if vθ then sθ

1 else sθ
2

let v = s1 in s2

θ
= let v = sθ

1 in sθ
2

call f b
θ

= call f bθ

− : Args × (Contr ∪Args ∪ Expl) → Args

{v1 7→ a1, . . . , vn 7→ an}θ = {v1 7→ aθ
1, . . . , vn 7→ aθ

n}

− : Expl × (Contr ∪ Expl) → Expl

{l1 7→ s1, . . . , ln 7→ sn}θ = {l1 7→ sθ
1, . . . , ln 7→ sθ

n}

− : PConf × (Contr ∪ Expl) → PConf

z |∆
θ

= zθ |∆θ

Fig. 3. The definition of substitution tθ for those domains which it is applied to
in the specialization relation definition

Thus tθ denotes the replacement of all occurrences of variables v ∈ Dom(θ)
in t with their values from a binding θ . Notation tηθ means sequential appli-
cation of substitutions η and θ to t in that order. When the argument of a

substitution is unclear, it is over-lined, e.g. a b c
θ
d .

The bindings listed in Fig. 1 are used as substitutions as follows:

– fp gets the term bound to a function name f in a program p ;
– fpb builds a monoconfiguration from a program term f b and the argument

binding b from a monoconfiguration call f b ;
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– z |∆
{l 7→z′}

substitutes a value z′ for a liaison variable l in a polyconfigura-
tion z |∆;

– sc and z |∆
c
contracts a monoconfiguration s and a polyconfiguration z |∆

respectively by replacing a configuration variable u with the configuration
value z′ bound to u by a contraction c = {u 7→ z′} .

See Fig. 3 for the formal definition of the substitution operation.

2.4 Contraction

After evaluation of a conditional, the current configuration divides into two sub-
configurations, the initial configurations of the positive and negative branches.
In our definition the subconfigurations represent the subsets precisely, that is,
they are disjoint.

There are two Boolean primitives, equ? v a and cons? v , in the object lan-
guage. After substitution of configuration values into the arguments of the prim-
itives, they ultimately reduce (by rules in Fig. 7 below) to the following checks
on configuration variables that produce branching in residual code: equ? u k ,
equ? u u′ , and cons? u , where k is an atom, u and u′ configuration variables.

For each of the primitives, the set of the values of a configuration variable
u that go to the positive branch can be represented by a substitution {u 7→ k} ,
{u 7→ u′} , or {u 7→ Cons u1 u2} , where k ∈ Atom , u1 and u2 are new con-
figuration variables. Such a substitution is referred to as a contraction. Being
applied to a configuration, it produces a configuration representing a subset of
the original one.

For uniformity’s sake, the opposite case of “negative” information—the set
of the values that go to the negative branch—is represented by a substitution as
well. To achieve this, we assume the representation of a configuration variable
contains a negative set : a set of “negative entities” the variable must be unequal
to. The negative entities are atoms, configuration variables, and the word Cons,
which represents inequality to all terms of the form Cons z1 z2 .

We denote the operation to add an entity n to the negative set of a config-
uration variable u by u−n . Thus the following substitutions are negative con-
tractions: {u 7→ u−k} , {u 7→ u−u′} , and {u 7→ u−Cons} .

2.5 Definition of Relations by Inference Rules

In the next sections the input-output interpretation and specialization relations
are defined in the style of Natural Semantics.

The relations are formalized by judgments listed and commented in Fig. 4.
A relation holds for some terms if the corresponding judgment is deducible.

The axioms, from which, and the inference rules, by which the judgments are
deduced, are presented in Figs. 5–11.

When we say just “deducible”, it means “deducible from all axioms and by
all inference rules presented in this paper”. When only part of axioms or rules
is used (e.g. for defining interpretation), it is mentioned explicitly.
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d ; z Interpretation and transient driving of a primitive d pro-
duces a value z. (The term d is a monoconfiguration.)

d ≺ T (c1, c2) Driving with branching: Driving of a primitive d produces
a branching represented by a residual conditional term T ( , )
with two free positions for positive and negative branches. In
the right-hand side T (c1, c2) these positions are occupied by
contractions c1 and c2. The contractions being substituted to
the configuration before the branching produce the initial con-
figurations for the positive and negative branches respectively.

p : s ⇒ q : r Specialization: A residual program q with an initial term r
is a specialization of a source program p with an initial term
s. (The term s is a monoconfiguration. The initial polyconfig-
uration is l | {l 7→ s}.)

p : z |∆ m : r Specialization to a term: A residual term r is a specializa-
tion of a source program p with an initial polyconfiguration
z |∆ with respect to a mapping m of residual function names
to polyconfigurations.

p : z |∆ ∅ : z′ Interpretation as a subset of specialization: In the case
where the residual program is empty, and hence m = ∅, and
the residual term z′ is a configuration value, z′ ∈ CData, the
previous judgment means interpretation or transient driving.

p : s → z Interpretation as a subset of specialization: This is a
shortcut notation for the particular case of the above judgment
of the form p : l | {l 7→ s} ∅ : z.

p : s
◦→ z Interpretation (semantics): This judgement is equivalent to

p : s → z with the requirement that it be deduced using only
the interpretation and transient driving rules marked with ◦.
This is proper interpretation when FVars(s) = ∅ and hence z
is a ground value, z ∈ Data.

Fig. 4. Judgments

3 Interpretation as a Subset of Specialization

A specialization relation is an extension of the semantics of a language, which
is usually a function (for deterministic languages). We could give the language
semantics, develop separately the specialization relation, and then prove the
statement that the specialization relation includes the semantics.

However, to save space and mental effort we follow another line. We define the
specialization relation by inference rules in such a way that a subset of the rules
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tr-drv
p : l | {l 7→ s}  ∅ : z

p : s → z
z ∈ CData

int
p : s → z

p : s
◦→ z

if inferred with ◦-rules only
z ∈ CData

Fig. 5. Transient driving and interpretation as a subset of specialization

defines the semantics, interpretation. The interpretation rules have labels marked
with ◦ . The rules with unmarked labels extend interpretation to specialization.

The specialization judgments p : s ⇒ q : r and p : z |∆ m : r contain a
residual program q and an auxiliary mapping m (explained in Section 5.1 be-
low), which has the same domain, Dom(q) = Dom(m) ⊂ FName , the set of
residual function names. When there are no residual functions, that is, p = q = ∅ ,
the residual code is merely a tree represented by the term r that cannot contain
call terms. The particular case where the residual term r is a value virtually
defines the semantics of the language. It can be proven that judgments of this
form are deducible by means of the interpretation rules only.

We define a shortcut notation p : s → z for this case by rule tr-drv, and
denote by a circle over the arrow the fact that it is inferred by the interpretation
rules only: p : s

◦→ z (see rule int in Fig. 5).
The interpretation rules also define transient driving, which is the basic case

of driving where the configuration and liaison variables do not prevent a special-
izer from unambiguously performing a step. The case of proper interpretation
can be distinguished from the case of transient driving by the restriction that
the initial configuration does not contain configuration variables, FVars(s) = ∅ .

Definition 1 (Interpretation, semantics). A source program p with an ini-
tial term s (in which arguments have been substituted) without configuration
variables, FVars(s) = ∅ , evaluates to a term x ∈ Data if the following judgment
is deducible:

p : s
◦→ x

4 Interpretation and Specialization of Primitives

4.1 Interpretation and Transient Driving of Primitives

A judgment of the form d ; z means interpretation or transient driving of a
primitive monoconfiguration d (i.e., a source program primitive term, in which
program variables have been replaced with their values) produces a value z .

In the rules we distinguish between the case where configuration values can
occur and the case where only ground values occur by the names of free variables:
k ∈ Atom ⊂ Data , x ∈ Data , z ∈ CData , that is, k and x range over ground
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i-value◦ z ; z z ∈ CData

i-fst◦ fst (Cons z1 z2) ; z1

i-snd◦ snd (Cons z1 z2) ; z2

i-cons-t◦ cons? (Cons z1 z2) ; True

i-cons-f◦ cons? k ; False k ∈ Atom

i-eq-t◦ equ? z z ; True

i-eq-f◦ equ? x1 x2 ; False
x1 6= x2

x1, x2 ∈ Data

d-eq-ck equ? (Cons z1 z2) k ; False k ∈ Atom

d-eq-cc
equ? z1i z2i ; False

equ? (Cons z11 z12) (Cons z21 z22) ; False
i ∈ {1, 2}

Fig. 6. Interpretation and transient driving of primitives

values and z ranges over configuration values that may contain configuration
and liaison variables. Note that only rules i-cons-f◦ and i-eq-f◦ , which defines
inequality, require values to be ground.

The last two rules in Fig. 6, d-eq-ck and d-eq-cc, and the rules in Fig. 7
that infer judgments of the form d ; z define the cases of transient driving that
are not covered by the interpretation rules.

The rules in Fig. 7 mean:

– d-cons-f and d-eq-ucf — returning False in the case where a configuration
variable u contains in its negative set the symbol Cons and hence is unequal
to any Cons term;

– d-eq-com — commutativity of equ?;
– d-eq-ukf — returning False in the case where a configuration variable u

contains in its negative set the atom k it is compared to;
– d-eq-uuf — returning False in the case where a configuration variable u1

contains in its negative set the configuration variable u2 it is compared to.
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4.2 Driving with Branching

A judgment of the form d ≺ T (c1, c2) means driving4 of a primitive monocon-
figuration d produces a branching in residual code represented by a conditional
term T ( , ) with two free positions for positive and negative branches and two
contractions c1 and c2 . The contractions c1 and c2 , being applied as substi-
tutions to the configuration d , divide it into two subconfigurations, which are
initial configurations for positive and negative branches respectively.

For the sake of notation brevity, the contractions c1 and c2 occupy in T ( , )
the positions where the residual terms for the positive and negative branches will
occur in the final residual code.

Figure 7 contains the rules that infer branching in residual code for the source
primitives cons? and equ?. The branching happens when a configuration vari-
able u (or two variables u1 and u2 in the case of the equ? term) prohibits from
performing an evaluation step. Notice the branching rules perform no evaluation
step of the source program, but just produce a residual if term and contractions.
The proper evaluation step is performed by transient driving rules for the same
primitive after contractions c1 and c2 has been substituted into the current con-
figuration by rule ps-branch, which produces initial configurations for branches,
and transient driving of the primitive has been “invoked” by rule ps-prim◦ in
Fig. 9.

The correctness of this deduction is based on the perfectness [3] of contrac-
tions c1 and c2 and on the fact that after substitution of ci into d some transient
driving rule for the judgment dci ; z is applicable.

In each of the three use cases of the term T ( , ) in Fig. 7 it meets the
following property: the value of T (x1, x2) is either x1 for the configuration
obtained by contraction c1 , or x2 for the configuration obtained by contraction
c2 . The correctness of rule ps-branch relies on this property.

In Fig. 7, the rules of driving of equ? and cons? terms that infer judgments
of the form d ≺ T (c1, c2) mean:

– Rule d-cons defines the branching in a residual program that corresponds
to a monoconfiguration of the form cons? u . The right-hand side consists of
the residual if term that tests the value of the variable u , the assignments of
the parts of the u value to fresh variables u1 and u2 on the positive branch,
and two complementary contractions {u 7→ Cons u1 u2} and {u 7→ u−Cons}
occupying in the term T ( , ) the positions of the positive and negative
branches respectively.

– Rules d-eq-uk and d-eq-uu analogously define the branchings correspond-
ing to monoconfigurations equ? u k and equ? u1 u2 in the case where there
is no information in negative sets of configuration variables about the equal-
ities under the respective tests.

4 What is usually called driving in the theory of supercompilation is unfolding an
infinite process tree [17,3,1]. This sense could be captured by the ◦ -rules together
with rule ps-branch if we consider infinite residual terms r . However, it would be
another theory.
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d-cons-f cons? u ; False
u = u−Cons

u ∈ Var

d-cons cons? u ≺ let u0 = cons? u in
if u0

then let u1 = fst u in
let u2 = snd u in
{u 7→ Cons u1 u2}

else {u 7→ u−Cons}

u 6= u−Cons

u0, u1, u2 new
u, ui ∈ Var

d-eq-com
equ? u z ; T
equ? z u ; T

u ∈ Var

d-eq-ukf equ? u k ; False
u = u−k

u ∈ Var
k ∈ Atom

d-eq-uk equ? u k ≺ let u0 = equ? u k in
if u0

then {u 7→ k}
else {u 7→ u−k}

u 6= u−k

u0 new
u, u0 ∈ Var
k ∈ Atom

d-eq-uuf equ? u1 u2 ; False
u1 = u−u2

1

u ∈ Var

d-eq-uu equ? u1 u2 ≺ let u0 = equ? u1 u2 in
if u0

then {u1 7→ u2}
else {u1 7→ u−u2

1 , u2 7→ u−u1
2 }

u1 6= u−u2
1

u0 new
ui ∈ Var

d-eq-ucf equ? u (Cons z1 z2) ; False

u = u−Cons

u ∈ Var
or u ∈ FVars(z1)
or u ∈ FVars(z2)

d-eq-uc
cons? u ≺ T

equ? u (Cons z1 z2) ≺ T

u 6= u−Cons

u ∈ Var
u 6∈ FVars(z1)
u 6∈ FVars(z2)

Fig. 7. Driving of primitives
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– Rule d-eq-uc reduces the test of equality of a variable u and a Cons term,
equ? u (Cons z1 z2), to the test of whether u is a Cons term or not, cons? u .
Recall the judgment d ≺ T (c1, c2) defines no evaluation step, only a branch-
ing. So, the rule reads as follows: to advance driving of the configuration
equ? u (Cons z1 z2) residualize the same branching as for the configuration
cons? u . After that, the evaluation step will be performed by the driving
rules for the equ? term.

5 Interpretation and Specialization of Control Terms

A judgment of the form p : z |∆ m : r inferred by the rules in Fig. 9 asserts
that a residual term r is a specialization of a source program p with an initial
polyconfiguration z |∆ with respect to a mapping m of residual function names
to polyconfigurations.

5.1 Correspondence between Residual Functions and Configurations

The mapping m : Dom(q) → PConf assigns meaning to the residual call terms
occurring in r . This can be explained in terms of the language semantics as
follows. For all values of the configuration variables of the configuration z |∆
and the residual term r ,5 evaluation of the configuration z |∆ with the source
program p gives the same result as evaluation of the term r in the following two
steps:

1) for each subterm of the form call fi bi occurring in r , evaluate the config-

uration fmbi
i = zi |∆i

bi

with the source program p , where zi | ∆i is the
configuration bound to the function name fi by the mapping m ;

2) evaluate the term r using the thus obtained values of the call terms.

In other words, each residual function body in q is equivalent to the corre-
sponding configuration in m . In its turn, the equivalence can be stated by the
specialization relation.

Notice the sense of the mapping m is inherently recursive: on the one hand,
m is used in the definition of the specialization relation; on the other hand,
its sense is based on the semantics of the language, which is a subset of the
specialization relation.

To escape from the vicious circle, we define a relation between m and source
and residual programs p , q . We refer to it as consistency of m with p and q .

Definition 2 (Consistency). A mapping m : Dom(q) → PConf of residual
function names to configurations is consistent with source and residual pro-
grams p and q if for every residual function name f ∈ Dom(q) the following
judgment is deducible:

p : fm  m : fq

provided the judgment is not inferred immediately from axiom ps-gen.
5 Note FVars(z |∆) = FVars(r) .
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spec
p : l | {l 7→ s}  m : r

p : s ⇒ q : r
if m is consistent with p and q

Fig. 8. Specialization relation

The equivalence of configurations and residual terms represented by the map-
ping m is virtually an inductive hypotheses, the deduction of the judgments in
the definition being an induction step. When proving by induction, care must
be taken to avoid premature use of the inductive hypothesis. This is the role of
the provision in the definition. Otherwise, the residual program may contain a
loop that is absent in the source program, and the residual program may not
terminate when the source program terminates.

5.2 Specialization Relation

Now we are ready to define the specialization relation, a relation between pairs
consisting of a program and an initial term. We denote the pairs by p : s and q : r
for a source program pair and a residual program pair respectively, p, q ∈ Prog ,
s, r ∈ CData . Only such terms s and r that have the same configuration vari-
ables can relate by the specialization relation, FVars(s) = FVars(r).

For the sake of uniformity of input and output, we consider the specialization
relation over plain terms (monoconfigurations) rather polygenetic configurations.
An initial term s corresponds to the initial polyconfiguration l | {l 7→ s} .

Definition 3 (Specialization). A pair q : r of a residual program q and an
initial term r is a specialization of a pair p : s of a source program p and
an initial term s if there exist a mapping m of residual function names to
configurations, consistent with p and q , such that the following judgment is
deducible:

p : l | {l 7→ s} m : r.

We denote the fact that pairs p : s and q : r satisfy the specialization relation
by judgment p : s ⇒ q : r . Formally it is defined by rule spec in Fig. 8.

5.3 Rules for Control Terms

Figure 9 contains the main part of the specialization relation definition for the
control terms.

Interpretation of Control Terms. Axiom ps-base◦ asserts the evident fact
that a constructor term z ∈ CData is equivalent to itself considered as either a
configuration, or a residual term.
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ps-base◦ p : z | {}  m : z z ∈ CData

ps-prim◦

d ; z′

p : z |∆
{l7→z′}
 m : r

p : z | {l 7→ d}∆  m : r

d ∈ Prim
z′ ∈ CData

ps-branch

d ≺ T (c1, c2)

p : z | {l 7→ d}∆
c1
 m : r1

p : z | {l 7→ d}∆
c2
 m : r2

p : z | {l 7→ d}∆  m : T (r1, r2)

FVars(d) ⊆ Dom(ρ)
d ∈ Prim

ps-if-t◦
p : z | {l 7→ s1}∆  m : r

p : z | {l 7→ if True then s1 else s2}∆  m : r

ps-if-f◦
p : z | {l 7→ s2}∆  m : r

p : z | {l 7→ if False then s1 else s2}∆  m : r

ps-let◦
p : z | {l′ 7→ s1, l 7→ s

{v 7→l′}
2 }∆  m : r

p : z | {l 7→ let v = s1 in s2}∆  m : r

l′ new
l′ ∈ LVar

ps-call◦
p : z | {l 7→ fpb}∆  m : r

p : z | {l 7→ call f b}∆  m : r

FVars(fp) ⊆ Dom(b)
f ∈ Dom(p)
f ∈ FName

b ∈ Var → Arg

ps-gen p : fmb  m : call f b

FVars(fm) ⊆ Dom(b)
f ∈ Dom(m)
f ∈ FName

b ∈ Var → Arg

Fig. 9. Polygenetic specialization
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Rule ps-prim◦ describes the case where a monoconfiguration d taken from a
polyconfiguration z | {l 7→ d}∆ can be evaluated to a value z′ , that is, d ; z′ .

Rules ps-if-t◦ and ps-if-f◦ define the semantics of the if term.
Rule ps-let◦ defines the let term by decomposing it into two parts and

reducing to a configuration where the parts s1 and s2 are bound to separate
liaison variables l′ and l respectively.

Rule ps-call◦ defines the term call f b by picking up the body fp of a
function f from a program p and applying the argument substitution to it.

Other rules specify specialization proper.

Residualization of Conditional Term. Rule ps-branch uses the result of
driving of a Boolean primitive to build a branching in residual code. It was
commented in Section 4.2 above.

Notice the case where a value of a conditional a is a configuration variable,
is absent. It is useless due to the syntactic restriction on the term a (see Sec-
tion 2.1).

Generalization. The most interesting rule is axiom ps-gen that defines the
notion of generalization of a configuration together with folding into a residual
call term.

Reading the judgment

p : fmb  m : call f b

from left to right in terms of production of residual code rather than its specifica-
tion, we say that some configuration fmb = z |∆ is generalized to configuration

fm = z′ |∆′ with the substitution b such that z |∆ = z′ |∆′
b
. The term call f b

is residualized, where the function f has such a body r = fq that satisfies the
specialization relation

p : z′ |∆′  m : r

which is implied by the consistency requirement to the mapping m of residual
function names to configurations.

Splitting a Configuration. The definition of polygenetic specialization is in-
complete without a rule that allows for composition of configurations if inference
rules are read forwards, or splitting a configuration into two ones if inference rules
are read backwards. Such rule ps-split is presented in Fig. 10.

Rules ps-gen and ps-split are the only rules that do not allow for un-
ambiguously constructing the specialization algorithm from the inference rules.
They reveal the place in construction of supercompilers where decision-taking
strategies when and how to generalize and when and how to split configurations
are to be developed. This is the most sophisticated part of supercompilers. The
quality of residual programs depends mainly on them, while the correctness is
guaranteed by the mere fact the result matches these inference rules.
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ps-split

p : z |∆1

{l7→u}
 m : r1

p : l | {l 7→ s}∆2  m : r2

p : z |∆1 {l 7→ s}∆2  m : let u = r2 in r1

V1 ∩ V2 = {l}
u new
u ∈ Var

where V1 = LVars(z |∆1)
V2 = LVars({l 7→ s}∆2)

Fig. 10. Splitting a Configuration

ps-collapse
p : z | {l 7→ s}∆

{l′ 7→l}
 m : r

p : z | {l 7→ s, l′ 7→ s}∆  m : r

ps-nonstrict◦
p : z |∆  m : r

p : z | {l 7→ s}∆  m : r

l 6∈ LVars(z |∆)
l ∈ LVar

Fig. 11. Extensions of interpretation and specialization

5.4 Extensions

The specialization relation can be infinitely extended by adding more and more
rules that describe additional equivalences between source and residual pro-
grams. Figure 11 demonstrates two of them.

The first extension is collapsed-jungle driving [12,13] defined by rule ps-
collapse. It avoids multiple evaluation of equal terms by deleting one of two li-
aison variable bindings of the form {l 7→ s, l′ 7→ s} and replacing all occurrences
of the deleted variable l′ by the variable l . The classic example of application
of this rule is transformation of the naive recursive definition of the Fibonacci
function with exponential complexity to the definition with linear complexity.

The second rule ps-nonstrict◦ extends the relation to non-strict semantics,
which means the possibility of evaluation of a function call without evaluation
of its arguments. The specialization rules allow for arbitrary order of evaluation.
All of the other rules preserve unevaluated terms even if their results are un-
needed. With rule ps-nonstrict◦ , which removes a binding of an unused liaison
variable, the relation allows for both non-strict semantics and lazy evaluation in
an interpreter as well as in a specializer.

Notice rule ps-collapse is considered a specialization relation rule (having
no ◦ mark), while ps-nonstrict◦ is marked with ◦ as an interpretation rule.
The reason for the difference is that the former rule does not change the language
denotational semantics, while the latter does. The collapsed-jungle driving allows
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Idempotency Transitivity Preservation of semantics
by specialization

p : s ⇒ q : r

q : r ⇒ q : r

p : s ⇒ q : r
q : rc ⇒ q′ : r′

p : sc ⇒ q′ : r′
(p : s

◦→ x) ⇔ (p : s → x)

Completeness Soundness Correctness

p : s ⇒ q : r
p : sc → x

q : rc → x

p : s ⇒ q : r
q : rc → x

p : sc → x

p : s ⇒ q : r

(p : sc ◦→ x) ⇔ (q : rc ◦→ x)

Fig. 12. Properties of the specialization relation

for merely achieving additional speed-up by specialization, while the non-strict
extension changes the termination behavior of a program.

If rule ps-nonstrict◦ were applied only to specialization then a residual
program might have a larger domain than the source program. This is often the
case of practical supercompilers for strict languages (e.g. for Refal [9]), since su-
percompilers use lazy evaluation for achieving better results. This is the reason
for the widespread myth that supercompilation in essence violates the termi-
nation behavior. However, if both source and residual programs as well as a
specializer use the same semantics—either strict, or non-strict—the semantics is
preserved (provided some other rules do not violate it).

6 Properties of Specialization Relation

As it is common in mathematics, relations obey more interesting properties
than functions. In Fig. 12 the most important properties of the specialization
relation are summed up. For readability, the statements are written out in form
of inference rules. Their validity can be proven from the specialization rules.

The properties are rather natural for such a relation. Some of the prop-
erties are mandatory: preservation of semantics, soundness, completeness, and
their corollary—correctness. Others—idempotency and transitivity—are addi-
tional nice properties that allow for simpler and more natural reasoning about
specialization in form of a relation.

6.1 Idempotency

Intuitively, we consider returning an unchanged program to be a trivial case of
specialization. One may expect that p : s ⇒ p : s is true, that is, the special-
ization relation is reflexive. However, our rules require some specialization of
function bodies always be performed, and hence many programs cannot occur
in the right-hand sides of deducible judgments. In principle, it is easy to add
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several rules that would allow for “doing nothing”, but we prefer the present
version, which guide us in construction of non-trivial specializers. Nevertheless,
any residual program is allowed to be its own specialization by our relation. Such
property is referred to as idempotency.

Proposition 1 (Idempotency). For all p , s , q , r such that

p : s ⇒ q : r

the following judgment is deducible:

q : r ⇒ q : r

6.2 Transitivity

Specialization can be performed stepwise: specialization of a source program
p : s with respect to a part of arguments (let them be already substituted into
s) followed by specialization of the residual program q : r with respect to a part
of the rest arguments (let them be represented by a substitution c) produces the
second residual program q′ : r′ , which may be expected to be a specialization of
the source program with respect to all information known so far. This property
(referred to as transitivity) is not generally true when specializer functions are
concerned, but it may hold for a specialization relation. This is indeed our case.

Proposition 2 (Transitivity). For all p , s , c , q , r , q′ , r′ such that

p : s ⇒ q : r
q : rc ⇒ q′ : r′

the following judgment is deducible:

p : sc ⇒ q′ : r′

6.3 Soundness

Consider the special case of transitivity where the second specialization is inter-
pretation, that is, the residual program is empty, q′ = ∅ , and the residual term x
is a configuration value, x ∈ CData . In this case transitivity means: if a residual
program q : r when run with arguments given by a contraction c produces some
result x , the source program p : s run with the same arguments also terminates
and gives the same result. This property is soundness of specialization.

Proposition 3 (Soundness). For all p , s , c , q , r , x such that

p : s ⇒ q : r
q : rc → x

the following judgment is deducible:

p : sc → x

Soundness is an immediate corollary of transitivity and a necessary condition
for correctness.
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6.4 Completeness

The converse property to soundness is completeness: if a source program p : s
when run with arguments c produces some result x , a residual program q : r
run with the same arguments also terminates and gives the same result.

Proposition 4 (Completeness). For all p , s , q , r , c , x such that

p : s ⇒ q : r
p : sc → x

the following judgment is deducible:

q : rc → x

Completeness is one more necessary condition for correctness.

6.5 Preservation of Semantics

Recall we use a subset of the specialization rules as the definition of the language
semantics. Hence, the fact that specialization includes interpretation is trivial.
However, we must ensure that the specialization rules do not occasionally extend
the semantics. Formally speaking, the following proposition must hold and it
holds for our specialization relation indeed.

Proposition 5 (Preservation of semantics). For all p , s , x such that

p : s → x

the following judgment is deducible:

p : s
◦→ x

6.6 Correctness

Since the semantics of the object language is represented by a part of the infer-
ence rules, the correctness of the specialization relation is its internal property
that can be expressed as follows.

Proposition 6 (Correctness). For all p , s , q , r such that

p : s ⇒ q : r

it holds that for all c and x the following judgments are deducible or not de-
ducible simultaneously:

p : sc ◦→ x

q : rc ◦→ x

The last two judgments mean interpretation of source and residual programs
p : s and q : r with values supplied by a contraction c produces equal results x .

The correctness is an immediate corollary of soundness, completeness and
preservation of semantics.
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7 Conclusion and Related Work

This paper presents a formal specification of a class of specializers by inference
rules in the style of Natural Semantics [6]. The rules define a relation between
source and residual programs, which partial evaluation and supercompilation
obey. The proposed intensional relation lies between algorithmic definitions of
specializers and the extensional equivalence of programs.

The specialization relation definition declaratively captures the essential no-
tions of supercompilation: configuration, driving, generalization of a configura-
tion, splitting a configuration, as well as advanced notions like collapsed-jungle
driving and variations of strictness and laziness of semantics, while abstracting
from algorithmic problems of when, what and how to generalize and split, and
when to terminate. It provides a basis for correctness proofs of supercompilers
and for construction of an alternative proof of the correctness of partial evalu-
ators [4,2]. To prove the correctness of a particular specializer we just need to
prove that its inputs and outputs satisfy the specialization relation. By nature of
Natural Semantics, the definition in form of inference rules allows for automated
derivation of specializers that satisfy it as well as checkers of the correctness of
residual programs.

An earlier version of specialization relation definition was presented at the
Dagstuhl Seminar on Partial Evaluation, where only abstract [7] was published.
It continues the work started in [3] and aimed at clarifying and formalizing the
ideas of supercompilation. This paper gives a generalization of the definition
presented in [8] from monogenetic to polygenetic case.

In Turchin’s original papers [16,17] and others, the essential ideas of super-
compilation and technical details of algorithms were not separated enough to
give their short formal definition. Later on, several works have been done to
fill this gap, e.g. [3,13,14,15]. All of them formalize the function of the super-
compiler, while our work is, to our knowledge, the first attempt to define an
input-output relation, which specializers based on both supercompilation and
partial evaluation satisfy. The closest related work is [13,14] where the notion of
the graph of configurations is formalized by inference rules that deduce the arcs
of the graph.

The specialization relation obeys a number of nice properties: idempotency,
transitivity and its corollary soundness, completeness, correctness, and others.

Future work will include development of specialization relation definitions
for more sophisticated languages, including object-oriented ones, further investi-
gation into their properties, and construction of supercompilers that satisfy the
specialization relation and hence are provably correct.
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An Approach to Polyvariant Binding Time
Analysis for a Stack-Based Language

Yuri A. Klimov?

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
RU-125047 Moscow, Russia, yuklimov@keldysh.ru

Abstract. Binding time analysis (BTA) is used in specialization by
means of partial evaluation method. Usual BTA only annotates a source
program. Polyvariant BTA transforms a source program to an annotated
one. Polyvariant BTA is known technique for functional languages. In
this paper polyvariant BTA for a model imperative stack-based language
is presented. It is described by means of building annotated control-flow
graph for a source program.

1 Introduction

Partial evaluation is well known program specialization method [9]. Given val-
ues of static (known) arguments of a program, partial evaluation constructs a
residual program — a specialized version of the source program, which on ap-
plication to values of remaining dynamic arguments produces the same result as
the source program applied to values of all arguments.

Offline partial evaluation stages the specialization in two phases: binding time
analysis (BT-analysis, BTA) and residual program generating. BTA starts with
a source program and a binding time values (BT-values) of all arguments and
produces an annotated program.

There are two kinds of BT-analysis: monovariant and polyvariant. A mono-
variant BTA annotates the source program, does not transform it, whereas a
polyvariant BTA generates a new annotated program. Monovariant BTAs are
simple and efficient to implement [1,2,9,15,16]. Polyvariant BTAs [3,5,7,17] are
more complex, but performs better result in many situations, when the same
methods or variables are used in different contexts.

This paper consists of two part. First syntax and operational semantics of
model imperative stack-based languages (SIL) are described. Then the polyvari-
ant BTA for this language is presented by means of building annotated control-
flow graph for a source program.

? Supported by Russian Foundation for Basic Research project No. 06-01-00574-a and
No. 08-07-00280-a, and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.
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Grammar

p ∈ Program ::= instr∗

instr ∈ Instruction ::= Pop | Dup | Swap | Const(c) | Goto(n) | IfGoto(n)
Unary(op) | Binary(op) | LoadVar(n) | StoreVar(n)

Fig. 1. Abstract syntax of SIL-programs

2 Imperative Stack-Based Language

For describing the polyvariant BTA the imperative stack-based language (SIL)
is used. SIL is a very simple stack language (fig. 1). A program at this language
is just sequence of instructions (no methods and invoke instructions) with con-
ditional and unconditional goto instructions (IfGoto(m) and Goto(m)). Other
instructions are load (LoadVar(n)) and store (StoreVar(n)) data from stack to
local variables, operations with data on stack (Unary(op) and Binary(op)) and
simple stack operations (Pop, Dup, Swap).

Instructions

Pop ìnt (x : st, σ) → (st, σ) Dup ìnt (x : st, σ) → (x : x : st, σ)
Swap ìnt (x1 : x2 : st, σ) → (x2 : x1 : st, σ) Const(c) ìnt (st, σ) → (c : st, σ)
Unary(op) ìnt (x : st, σ) → (op(x) : st, σ)
Binary(op) ìnt (x1 : x2 : st, σ) → (op(x1, x2) : st, σ)
LoadVar(n) ìnt (st, σ) → (σ(n) : st, σ)
StoreVar(n) ìnt (x : st, σ) → (st, σ[n 7→ x])

Instructions with control point

Goto(n) ìnt (m, (st, σ)) → (n, (st, σ))
IfGoto(n) ìnt (m, (0 : st, σ)) → (m + 1, (st, σ))
IfGoto(n) ìnt (m, (1 : st, σ)) → (n, (st, σ))

instr ìnt (st, σ) → (st′, σ′)

instr ìnt (m, (st, σ)) → (m + 1, (st′, σ′))

Program

p(m) ìnt (m, (st, σ)) → (m′, (st′, σ′))

p ìnt (m, (st, σ)) → (m′, (st′, σ′))

p ìnt (0, (st, σinit)) →∗ (length(p), (st′, σ))

p ìnt st ⇒ st′

Fig. 2. Operational semantics of SIL-programs
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The data in SIL is integer numbers. Nevertheless it is easy to extend data
by other data (double numbers or boolean values). Operation op in Unary(op)
and Binary(op) can be any operation with integer numbers, including, but not
limited to, addition (+), subtraction (−), multiplication (×), compare (<, ≤, >,
≥), negate and etc.

The semantic of SIL is straightforward and it is described at fig. 2. A SIL-
program is evaluated by steps. Each step changes a state. Each state (m, (st, σ))
has three parts: m — number of current instruction (control point), st — stack
of values, σ — mapping from local variables to their values.

A computation of a program begins from initial state (0, (st, σinit)), where
st — program arguments, and σinit — mapping from local variables to initial
value 0. At each step state is changed in according to the rules. When number
of current instruction becomes equal to length of the program then evaluation of
this program is finished. Values at a stack are results of this program. If number
of current instruction becomes more than length of the program or no rules can
be applied then evaluation of this program is terminated with error.

The SIL is similar to stack-based languages described in [2] or [15]. It contains
same instruction set except array instructions and method invoke instructions.

3 Binding Time Analysis

The goal of BTA is to divide all instructions in two classes: static (S) and
dynamic (D). Static instructions will be evaluated during residual program gen-
erating, dynamic instructions will be put to residual program.

The presented method of building annotated program is close to the Su-
percompilation [18]. It uses driving and whistling for building possibly infinity
binding time tree (BT-tree) and for reducing it to finite binding time graph
(BT-graph) respectively.

3.1 Driving

BT-tree is a tree with annotated instructions at nodes and with binding time
states (BT-states) at ridges (fig. 4). BT-tree is similar to control-flow graph
without ridge to previous nodes, each ridge is going to a new node. This BT-tree
can be applied to arguments values like usual program. The BT-tree is fully
equivalent to the source program: on application to values it produces the same
result as the source program applied to same values.

BT-state is a state with binding time values (BT-values) S and D instead of
usual values. Bold style for binding time values and variables are used below: S
and D are BT-values, x is a binding time variable (BT-variable) that rages over
BT-values S and D.

Building of BTA tree begins with a initial BT-state (0, (st, σinit)), where st
— BT-values of arguments (S corresponds to known arguments and D corre-
sponds to unknown during specialization arguments) and σinit — mapping from
local variables to initial BT-value S.
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Lifting instruction

Lifting(n) ìnt (st, σ) → (st, σ)

Instructions

Pop b̀ta (x : st, σ) → 〈Popx; (st, σ)〉
Dup b̀ta (x : st, σ) → 〈Dupx; (x : x : st, σ)〉
Swap b̀ta (x : x : st, σ) → 〈Swapx; (x : x : st, σ)〉
Swap b̀ta (S : D : st, σ) → 〈SwapS; (D : S : st, σ)〉
Swap b̀ta (D : S : st, σ) → 〈SwapS; (S : D : st, σ)〉
Const(c) b̀ta (st, σ) → 〈Const(c)S; (S : st, σ)〉
Unary(op) b̀ta (x : st, σ) → 〈Unary(op)x; (x : st, σ)〉
Binary(op) b̀ta (x : x : st, σ) → 〈Binary(op)x; (x : st, σ)〉
Binary(op) b̀ta (S : D : st, σ) → 〈Lifting(0)D, Binary(op)D; (D : st, σ)〉
Binary(op) b̀ta (D : S : st, σ) → 〈Lifting(1)D, Binary(op)D; (D : st, σ)〉
LoadVar(n) b̀ta (st, σ) → 〈LoadVar(n)σ(n); (σ(n) : st, σ)〉
StoreVar(n) b̀ta (x : st, σ) → 〈StoreVar(n)x; (st, σ[n 7→ x])〉

Instructions with control point

Goto(n) b̀ta (m, (st, σ)) → 〈Goto(n)S; (n, (st, σ))〉

IfGoto(n) b̀ta (m, (x : st, σ)) → 〈IfGoto(n)x; (n, (st, σ)), (m + 1, (st, σ))〉

instr b̀ta (st, σ) → 〈instrs; (st′, σ′)〉
instr b̀ta (m, (st, σ)) → 〈instrs; (m + 1, (st′, σ′))〉

Program

p(m) b̀ta (m, (st, σ)) → 〈instrs; brs〉
p b̀ta (m, (st, σ)) → 〈instrs; brs〉

Fig. 3. Trace semantics for binding time trees

For each BT-state one of rules (fig. 3) is applied. The rule shows an an-
notated instruction at new node and one or two new BT-states at ridges in
subject to current BT-state and instruction. For example, if there are BT-state
(m, (x : st, σ)) and current instruction IfGoto(n), then it is needed to add new
node with two new ridges to BT-tree. The node must contain annotated in-
struction IfGoto(n)x and the ridges must contain BT-states (n, (st, σ)) and
(m + 1, (st, σ)).

In come cases new instruction Lifting(n) is added to a BT-tree. This in-
struction tells residual program generator that static (known) value in stack at
depth n must be residualized be means of generating Const(c) instruction and
some stack instructions. For interpretation Lifting(n) instruction means no
operation.
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Source program

p = [IfGoto(2), Swap, Dup, Binary(×), Binary(+)]

Annotated program

[S, S, D]
↓ (0, ([S, S, D], σinit))

IfGoto(2)S

(1, ([S, D], σinit)) ↙ ↘ (2, ([S, D], σinit))
SwapS DupS

(2, ([D, S], σinit)) ↓ ↓ (3, ([S, S, D], σinit))
DupD Binary(×)S

(3, ([D, D, S], σinit)) ↓ ↓ (4, ([S, D], σinit))
Binary(×)D Lifting(0)D

(4, ([D, S], σinit)) ↓ Binary(+)D

Lifting(1)D ↓ (5, ([D], σinit))
Binary(+)D [D]

(5, ([D], σinit)) ↓
[D]

Fig. 4. BT-tree for the program p(x, y, z) = if x then y2 + z else z2 + y; x and
y are static (known), z is dynamic (unknown).

3.2 Whistling

During BT-tree building all BT-states are checked for conjunction. If two BT-
states (may be at different branches) are equal (whistling) when nodes at the end
of this ridges are be merged into the new node. It is permitted because BT-tree
constructed from some BT-state depends on this BT-state only.

Building of BT-graph is ending because there are only finite numbers of all
possible BT-states for a SIL-program. Residual BT-graph is graph representation
of annotated program. Residual Program Generating for such annotated program
is identical to [2].

3.3 Example

Let’s consider a small program p (fig. 4). The polyvariant BTA produces a BT-
graph represented at fig. 4.

This BT-graph contains two instructions Binary(×) with different BT-an-
notations according to different BT-annotations of stack at the same program
point. At the left hand size instruction Binary(×) annotated as dynamic (D),
while at the right hand size instruction Binary(×) annotated as static (S).

This means that if first argument of p is false during specialization then
instruction Binary(×) will be residualized. In other case instruction Binary(×)
will be evaluated during residual program generating.
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4 Related Work

In many prior works monovariant BTAs [9] for functional languages are de-
scribed. In [3,7,17] polyvariant BTAs for functional languages are presented.
In minority works [1,2,15,16] monovariant or polyvariant BTAs for imperative
languages are considered [13].

L. O. Andersen [1] uses C language. P. Bertelsen [2] and H. Masuhara and
A. Yonezawa [15] describe monovariant BTA for various subsets of stack-based
Java Byte Code [8]. In both papers simple stack-based language like SIL (which
is described in this paper) is uses: in [2] SIL is extended with array instruction
and in [15] SIL is extended with method invocation instruction.

U. P. Schultz [16] introduces monovariant BTA some subset of Java language
[8]: object-oriented but not stack-based language. Also he suggests some polyvari-
ant (class polyvariant and method polyvariant) extensions of BTA. N. H. Chris-
tensen and R. Glück [5] present polyvariant BTA for flowchart imperative lan-
guage.

Presented BTA extends prior monovariant BTAs for stack-based language by
introducing control-point polyvariant, stack polyvariant and environment poly-
variant annotation method. It uses infinite control-flow tree for building finite
annotated graph. This new method bases on ideas of Supercompilation [18]. It
is possible to enhance this method for a object-oriented stack-based language
[10,11,12].

5 Conclusion

In this paper polyvariant BTA for simple stack-based language is introduced.
This method is fully automatic and it is used in specializer CILPE [4,14].

In some cases polyvariant BTA can produce a huge residual program. I would
like to investigate extensions of polyvariant BTA for producing a program of
reasonable size. Another direction of research is to enhance this method for
object-oriented stack-based languages such as Java Byte Code (Java platform)
[8] and Common Intermediate Language (Microsoft .NET platform) [6] which
are used in popular virtual machines.
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Abstract. We describe the XSG programming language and define a
formal semantics for it.

1 Introduction

XSG is a functional-logic untyped first-order language. Like a functional lan-
guage it has functions which return results (not predicates only as classic logic
languages). And like a logic language it allows implicit definition of variables’
values.

XSG is developed as a model language for metacomputations. It is a successor
of the TSG and NTSG languages used by S. M. Abramov and R. Glück for
formal description of basic metacomputation tools such as driving, PPT and
URA [1,2,3,4,5,6,7].

In XSG the concept of pattern matching is generalized by introducing equa-
tions. Both free and bound variables in equations can go both at the left and
at the right sides. Also a variable can occur in an equation several times. Thus
there is a notion of equality inherent in the language.

Every variable in XSG is a logic variable: it designates a set of possible
values. The equations are global constraints on the variables. Thus there is an
embedded nondeterminism in the language as the program result is an unordered
set of possible answers.

Free variables may also occur in function arguments. In order to find val-
ues for such variables universal resolving algorithm (URA) [2,3,4,5,6,7] is used.
URA guaranties to find every solution for an equation system with such im-
plicitly defined variables in finite time (though, of course, URA itself does not
always terminate). In that sense the language is fair : every solution will be found
eventually.

2 Key Features of XSG

XSG has several particular features that can not be found in the majority of
programming languages.
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a,

and No. 07-07-92100-GFEN a, and No. 08-07-00280-a, and Russian Federal Agency
of Science and Innovation project No. 2007-4-1.4-18-02-064.
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A function in XSG can have several arguments and several results (nontrivial
coarity). As XSG is first-order untyped language, coarity is essential for avoiding
dynamic checks of function results.

In the majority of existing programming languages equality is not built-in
construction: for every user-defined data structure the user should provide an
equality test. The user should be aware of the evaluation order while specifying
equality so that it does terminate.

For example in Haskell language library function (==) is defined to work
in the left to right order for tuples. Consequently, the following expression in
Haskell does not terminate:

(undef, ‘A’) == (undef, ‘B’) where undef = undef

Some languages (see Curry [14]) provide built-in strict equality which is sat-
isfied if both sides are reducible to a same ground data. The problem with strict
equality is that it forces evaluation of the ground data even if it can be proven
that there is not any possible one. Consider, for example, the following code in
Curry:

undef = undef

f x = x =:= 0 & x =:= 1

Main1 = f x where x free
Main2 = f undef

Equational constraint (=:=) is evaluated as strict equality in Curry. The
result of the evaluation of Main1 function is an empty set of answers. That is,
the system have proven there is no any possible values for x. But the evaluation
of Main2 function does not terminate.

XSG provides built-in equality which is not strict. Contrary to other pro-
gramming languages, in XSG, condition x = y is always immediately true if
x is textually identical to y up to free variables renaming (note that x and y
can contain variables bounded to function calls but not the calls themselves).
Moreover, in XSG the order of evaluation guaranties that all reachable to the
moment equations will be considered in finite time, so Main2 from the Curry
example above would terminate as well as Main1.

3 Formal Semantics of XSG

3.1 Syntax

Data domain for an XSG program is built by user-defined constructors. Each
constructor has a fixed arity. Atoms are presented as nullary constructors.

XSG has a rather simple grammar (see figure 1). A program consists of a
number of function definitions.

Each function has a fixed number of arguments and a fixed number of results.
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Function definition contains a number of sentences. A sentence consists of
left hand side and right hand side parts. Before with all the function results are
constructed. After with there goes a set of conditions and terms. The order of
terms and conditions is not important: they are considered as a whole.

A condition is an equality test of two expressions. As both expressions can
contain free variables it is more general then the equality test and the pattern
matching in traditional programming languages and corresponds to the mathe-
matical notion of an equation. Note that function calls are presented in equations
not directly but by liaison variables introduced in terms. A term is just a function
call assigned to fresh liaison variables.

Free, liaison, and argument variables can repeat in one or several equations
as well as in function arguments in terms.

A particular expression is a result of a function if it can be obtained from the
left hand side of some sentence by applying a substitution which turns all the
equations into identities. That is, all sentences are considered independently.

In each term the number of liaison variables is equal to the number of results
of the corresponding function. The number of arguments in a call is equal to the
number of arguments of the corresponding function.

See section 5 for examples of simple XSG programs.

Grammar

p ∈ Program ::= q+

q ∈ Definition ::= (define f x̄ s∗)
s ∈ Sentence ::= (ē with k∗ t∗)

k ∈ Condition ::= (eq? e e)
t ∈ Term ::= (x̄ := (call f ē))
e ∈ Expression ::= (cons c ē) | x

f ∈ Function name
c ∈ Constructor name

x ∈ Variable

a∗ − set of items of type a
a+ − nonempty set of items of type a

ā − ordered sequence of items of type a

Fig. 1. Abstract syntax of XSG

3.2 Natural Semantics

Natural semantics of XSG is presented in figure 2.
First two rules are usual for logical programming languages such as Prolog.
The first rule says that each sentence result can be obtained by applying a

substitution to the left hand side of the sentence. The substitution assigns ex-
tended values to some free variables. The extended values can contain indefinite
constructors, see “Indefinite Call” rule. The substitution must be correct: after
applying it to the right hand side of the sentence all the equations must become
true.
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The second rule just says that one can obtain a result of a function call from
any sentence from the function definition.

The third rule is the one that differentiate XSG from other logical program-
ming languages. In essence it introduces a possibility for laziness in equality. It
allows one to proceed without computing the actual value of the called function.
The results of the function call are assumed to be some unique indefinite data
— new indefinite constructors. Each indefinite constructor is equal to itself only.

Sentence

∃θ ∀k ∈ k∗ k = (eq? e1 e2) e1/θ = e2/θ
∀t ∈ t∗ t = (x̄ := (call f ēarg)) Γ̀ (call f ēarg/θ) ⇒ x̄/θ

Γ̀ (ē with k∗ t∗) ⇒ ē/θ

Call Indefinite Call

Γ (f) = (define f x̄par s∗)
∃s ∈ s∗ Γ̀ s/[x̄par 7→ ēarg] ⇒ ēres

Γ̀ (call f ēarg) ⇒ ēres

ū− new indefinite constructors

Γ̀ (call f ēarg) ⇒ ū

Fig. 2. Natural semantics of XSG-programs

3.3 Trace Semantics

Now let us consider the semantics of XSG from the interpreter point of view (see
figure 3).

Conditions are simplified (step-by-step) by means of the most general unifi-
cation algorithm (MGU). For a system of equations MGU returns a substitution
for some variables or fails if the system is inconsistent. MGU also changes the
system of equations by removing identities, so we denote the resulting system as
k∗new.

Another way to proceed with a sentence is to fulfil a function call. That
is done by substituting the results from one of the called function sentences
for liaisons. Note that a term to be reduced as well as a sentence from that
term’s function can be chosen arbitrarily. This is nondeterministic step and an
interpreter should try all possible choices.

The “Main” rule says that a given function call can produce a particular
result if there exists such a sequence of MGU- and Call-steps that leads to it.

4 Discussion

We have shown big-step and small-step semantics for the language. In order
to present the possibility of comparing expressions without actually evaluating
them to a ground data we have introduced indefinite constructors.
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MGU
mgu(k∗) = (k∗

new, θ)

Γ̀ (ē with k∗ t∗) → (ē/θ with k∗
new t∗/θ)

Call

for some t ∈ t∗ t = (x̄ := (call f ēarg)) Γ (f) = (define f x̄par s∗)
for some s ∈ s∗ s/[x̄par 7→ ēarg] = (ēres with k∗

1 t∗1) θ = [x̄ 7→ ēres]

Γ̀ (ē with k∗ t∗) → (ē/θ with k∗/θ k∗
1 (t∗\t)/θ t∗1)

Main

Γ̀ (x̄ with (x̄ := (call f ēarg))) →∗ (ēres with t∗)
ēres does not contain variables from t∗

Γ̀ (call f ēarg) ēres

Fig. 3. Trace semantics of XSG-programs

Indefinite constructors obviously can not be presented in a program answer
as they are abandoned function calls. Apart from that the result for a given
program evaluation by either of the presented semantics is the same. So we can
formulate the following theorem.

Theorem 1. Γ̀ (call f ēarg)⇒ ēres and ēres does not contain indefinite con-
structors iff Γ̀ (call f ēarg) ēres.

Now we have fixed the language semantics, so we can build a perfect process
tree (PPT) for a given program [11]. The amazing fact is that the trace semantics
for an XSG program coincides with the trace semantics for its perfect process
tree.

In other words, PPT can be considered as the language interpreter. This
proves that there exists an interpreter for the XSG language with the following
remarkable property.

Theorem 2 (Fairness). Any result for any function call that can be obtained by
applying any evaluation strategy will be eventually computed by the interpreter.

5 Examples

Due to the embedded URA it is possible to specify a function by its inverse in
XSG.

For example, if we have defined addition, then subtraction definition is trivial.
See figure 4 for addition and subtraction for unary numbers. The definition of
Sub can be read as following: x1−x2 is such number x3 that x2 + x3 is equal to
x1. As can be seen it is precisely the algebraic definition of subtraction.

Another interesting example is shown in figure 5. Similarly to subtraction in
figure 4 we define list splitting as an inverse for concatenation. Note that Split is
different from Sub in two ways: 1) it returns two expressions — two parts of the
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Definitions for Add and Sub

(define Add x1 x2

( x2 with (eq? x1 (cons O )) )
( (cons I x3) with (eq? x1 (cons I x′

1)) (x3 := (call Add x′
1 x2)) )

)

(define Sub x1 x2

( x3 with (eq? x1 x′
1) (x′

1 := (call Add x2 x3)) )
)

Fig. 4. XSG-functions for unary addition and subtraction

given list; 2) there is a lot of ways to split the list in two parts, so the function
is nondeterministic.

Function Perm uses nondeterminism of the function Split to (nondetermin-
istically) compute all permutations of the numbers from zero to its argument. It
returns each permutation as a list of that unary numbers. Its definition can be
read as following: 1) if the argument (x1) is zero, then return the only possible
permutation as a list of length one; 2) else find all permutations for x1− 1, split
each in two parts (in all possible ways), and insert x1 between the parts.

6 Conclusion and Future Work

We have defined formal semantics for the XSG language and have shown that it
has some interesting properties which differentiate it from other programming
languages.

The main obstacle for practical programming in XSG is the absence of neg-
ative restrictions. A programmer can specify positive tests (equality) only, and
fails in those tests are not propagated anywhere but silently discarded. Program-
ming without “else” is not very convenient for a lot of tasks, so adding negative
restrictions to the language would be a major achievement.

XSG is developed as a model language for metacomputations simultaneously
with the development of metacomputation tools for it. Another stage of devel-
opment would be a supercompiler for XSG. Here arises the (hopefully, solvable)
problem of splitting a configuration without changing the semantics of a pro-
gram. The matter is identity equation in the original configuration can require
(possibly, infinite) computation in the split one. Further issues for the super-
compilation are raised by the rational XSG data (infinite periodic trees) which
are not discussed in the present paper.

XSG interpreter is implemented in Haskell. All sources for the system and
sample XSG programs are freely available from the web [33].

Authors would like to thank S. M. Abramov and A. S. Mishchenko who par-
ticipated a lot in the development of the language.
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Definitions for Concat, Split, and Perm

(define Concat x1 x2

( x2 with (eq? x1 (cons Nil )) )
( (cons Cons x′

1 x3) with (eq? x1 (cons Cons x′
1 x′′

1 ))
(x3 := (call Concat x′′

1 x2)) )
)

(define Split x1

( x2 x3 with (eq? x1 x′
1) (x′

1 := (call Concat x2 x3)) )
)

(define Perm x1

( x2 with (eq? x1 (cons O ))
(eq? x2 (cons Cons (cons O ) (cons Nil ))) )

( x5 with (eq? x1 (cons I x′
1))

(x2 := (call Perm x′
1))

(x3 x4 := (call Split x2))
(x5 := (call Concat x3 (cons Cons x1 x4))) )

)

Fig. 5. XSG-functions for list concatenation, splitting, and permutations gener-
ation
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Abstract. In the paper we explain the technique of verification via su-
percompliation taking as an example verification of the parameterised
Load Balancing Monitor system. We demonstrate detailed executable
specification of the Load Balancing Monitor protocol in a functional pro-
gramming language REFAL and discuss the result of its supercompilation
by the supercompiler SCP4.
This case study is interesting both from the point of view of verification
and program specialization. From the point of view of verification, a new
type of non-determinism is involved in the protocol, which has not been
covered yet in previous applications of the technique. With regard to
program specialization, we argued earlier that our approach to program
verification may be seen as specialization of interpreters with respect to
data [25]. We showed that by supercompilation of an interpreter of a
simplest purely imperative programming language. The language corre-
sponding to the Load Balancing Monitor protocol that we consider here
has some features both of imperative and functional languages.
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1 Introduction

Valentin Turchin in his classical paper on supercompilation [41] has suggested
the following scheme of using this program transformation technique for proving
properties of the (functional) programs:

. . . if we want to check that the output of a function F (x) always has
the property P (x), we can try to transform the function P (F (x)) into
an identical T .
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02-064.
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The scheme albeit being very natural has not attracted much attention
and has not been used until recently for proving properties of programs. In
[19,21,22,20] we revitalized the idea and proposed the particular scheme of

parameterized testing + supercompilation

based on Turchin’s proposal, suitable for verification of parameterized protocols.
Various protocols have been verified using the scheme [19,21,22,23,24,25]. In
this paper we explain the technique by presenting the verification of yet another
protocol that is a Load Balancing Monitor [2].

This case study is interesting both from the point of view of verification and
program specialization.

From the point of view of verification, a new type of non-determinism is
involved in the protocol, which has not been covered yet in previous applications
of the technique.

With regard to program specialization we argued in [25] that our approach to
program verification may be seen as specialization of interpreters with respect
to data; we gave an example of the task (successfully resolved by the super-
compiler SCP4), where the language to be interpreted was a purely imperative
programming language L. Here under the language we mean a simplest program-
ming language L corresponding to a parameterized cache coherence protocol. A
prorgam in the language L is a finite sequence of instructions corresponding to
the actions of the protocol. Any instruction when executed updates the global
state of the computing system controlled by the protocol.

The LBM protocol provides an example of a simplest language with func-
tional features: the programs not only transform the global memory, but also the
data passed through the arguments. Taking into account our choice of a program
model of the protocol, the “brute force” algorithm involved in supercompilation
and traversing all programs together with their arguments makes possible the
analysis of non-deterministic choices of a next action (and/or a values of an
argument).

Despite simplicity of the languages generated by the protocols (and, what
is more, due to their algorithmic incompleteness), automatic specialization of
their interpreters opens very interesting and important problems leading to more
fundamental understanding the nature of program specialization. Indeed, algo-
rithmic completeness of any language to be interpreted makes any interesting
specialization task (per se) of its interpreter algorithmic undecidable, while algo-
rithmic incompleteness of a language provides reasonable hope that statements
on properties of the tools specializing such interpreters3 may be formulated and
proved. For example, the classical specialization task considered in the following
section (specialization of an interpreter int with respect to a given program)
aims to eliminate the whole interpretive overhead. But such a task (per se) is
undecidable, when the language to be interpreted is algorithmically complete;
just because in such a case the int has to be written itself in an algorithmically
complete programming language. An incomplete programming language L to
3 The properties concerning the specialization task to be solved.
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be interpreted provides a hope that an interpreter int simulating the programs
written in L may be implemented itself in another incomplete programming lan-
guage. The last in its turn gives a hope that the problem to eliminate the whole
overhead may be decidable (not only per se but by means of a concrete spe-
cializer). Especially that is very interesting when such an incomplete language
L (to be interpreted) originates from practice. That is our case.

In practical implementation of the technique we use the functional program-
ming language REFAL [43] and the most advanced REFAL supercompiler SCP4
[31,34]

2 Verification as Specialization of Interpreters

Given two programming languages L, M and the semantics of L described by
an interpreter int(p,d) written in M, where the first argument stands for the
source L-programs and the second ranges over the data of the L language. There
is a famous task for automated specialization of the interpreter with respect
to the first argument int(p0,d), i.e. the program p0 is known while the data
d is unknown. Specialization has to generate a residual program q such that
q(d) = int(p0,d), where the equality holds whenever the pair (p0,d) belongs
to the domain of the interpreter. Certainly the q is written in M: consequently
q can be seen as a result of compilation of p0 from L to M. The goal is to
construct an optimal q. The formulated problem is both undecidable (of course)
and interesting. A lot of work was devoted to approximation of the problem (see
[5,6,8,9,29,35] for examples).

In the paper [25] we showed that specialization of interpreters with respect to
data may be reasonable and leads to interesting applications in verification. We
considered the following specialization problem int(p,d,d0), where the known
part of the data is separated from the unknown part. Firstly, for the sake of sim-
plicity, let us think of the languages L,M as relational languages, i.e. the languages
defining only (partial) predicates rather than arbitrary recursive functions. An-
other assumption is that the interpreter int terminates for all possible values of
its arguments, but for some values it may terminate with abnormal stop. The
abnormal stop indicates that the input values of the arguments are outside of the
domain. Let us have a robust specializer generating a residual program q defin-
ing an extension of the partial predicate defined by the problem int(p,d,d0).
Assume that q is a partial constant function TRUE or FALSE and this property is
expressed explicitly in syntax of q. For example, q does not contain any syntactic
construction with the semantics return FALSE (in the case of the TRUE partial
constant). Thus, we assume that specializer was weak enough not to be able to
optimize the predicate int as

q(p,d) { return TRUE; }

but was strong enough to eliminate all syntactic constructors of the form return
FALSE;. In such a case, the result of specialization can be considered as a proof
of the (partial) constant property. The termination property of int mentioned
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above guarantees that the domain of the original partial predicate is not empty.
Notice that we assume that the specializer is allowed to extend the domain of
the original partial predicate. This provides additional important possibilities
for specialization (see [30]) and distinguishes supercompilation, the technology
of specialization we use (see Section 5), from other well known specialization
technologies (e.g. partial evaluation [8]).

Consider now a more complicated interpreter. Let int be a composition
ϕ◦fint of a functional language interpreter fint (i.e. not only predicative) and
a predicate-postcondition ϕ testing the result of fint-interpretation. Now the
TRUE-constant property of the residual program q means all source programs p
satisfy the post-condition ϕ (in the given context of specialization). In such a case
we conclude that the specializer solved a verification problem. The composition
ϕ ◦ fint can be encoded in various ways.

The following sections are devoted to a non-trivial application of the idea.

3 Parameterized Testing and Verification

In this section we describe our general technique for the verification of param-
eterized systems. The technique is based on the translation of the statements
about safety properties of a system to be verified into the statements about
properties of the program that simulates and tests the system. The reader is
called to trace parallels with the previous Section 2.

The scheme works as follows. Let S be a parameterized system (a protocol)
and we would like to establish some safety property Q of S. We write a program
fintS simulating execution of S for n steps, where n is an input parameter. If the
system is non-deterministic, an additional parameter p̄ is provided, whose value
is assumed to be a sequence of choices at the branching points of execution, e.g.
it may be a string of characters labeling the choices. Thus, we assume that given
the values of input parameters n and p̄, the program fintS returns the state of
the system S after the execution of n steps of the system, following the choices
provided by the value of p̄. Let TQ( ) be a testing program, which given a state s
of S returns the result of testing the property Q on s (TRUE or FALSE). Consider
a composition TQ(fintS(n, p̄)). This program first simulates the execution of
the system and then tests the property required. Now the statement

“the safety property Q holds in any possible state reachable by the execution of
the system S”

is equivalent to the statement

“the program T (fintQ(n, x̄)) never returns the value FALSE, no matter what
values are given to the input parameters”.

Here we assume additionally that both programs fintQ and T terminate for all
possible inputs, but for some values they may terminate with abnormal stop.
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In practical implementation of the scheme we use functional programming
language REFAL-5 to implement a program TQ(fintS(n, p̄)) and the supercom-
piler SCP4 to transform a program to a form, from which one can easily establish
the required property.

In present paper we extend this basic technique to tackle protocols with new
type of non-determinism. To this end choices at the branching points of execution
of protocols are labeled not by characters but rather by terms. Further, there is
not need for two separate parameters n and p̄ – the length of (the value of) p̄
will play the role of n.

4 REFAL Programming Language

The REFAL programming language [43] (Recursive Functions Algorithmic
Language) is a first-order strict functional language. Unlike LISP the language
is based on the model of computation known as Markov’s algorithms [28]. Here
we restrict ourselves with a fragment of REFAL and everywhere we will mean
the fragment.

program ::= $ENTRY definition+
definition ::= function-name { sentence;+ }
sentence ::= left-side = expression
left-side ::= pattern
expression ::= empty | term expression | function-call expression
function-call ::= <function-name arg>
arg ::= expression
pattern ::= empty | term pattern
term ::= SYMBOL | variable | (expression)
variable ::= e.variable-name | s.variable-name | t.variable-name
empty ::= /* nihil */

REFAL data are defined by the grammar:

d ::= d1 d2 | (d1) | SYMBOL | empty

Roughly speaking, a program in REFAL is a term rewriting system. The
semantics of the language is based on pattern matching. As usual, the rewriting
rules are ordered to match from the top to the bottom. The terms are generated
using two constructors. The first is concatenation. It is binary, associative and
is used in infix notation, which allows us to drop its parentheses. The blank is
used to denote concatenation. The second constructor is unary. It is syntactically
denoted by its parentheses only (that is without a name). The unary constructor
is used for constructing tree structures. Formally, every function is unary. The
empty sequence is a special basic ground term. This term is denoted with nothing
and called “empty expression”. It is the neutral element (both left and right) of
concatenation. All other basic ground terms are named as “symbols”. That is
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unlike the LISP data set including only binary trees (i.e. not arbitrary trees and
not sequences of trees).

There exist three types of variables – e.name, s.name and t.name. An e-
variable can take any expression as its value, an s-variable can take any symbol as
its value and t-variable can take any term as its value (a term is either a symbol
or an expression in structure brackets). For every sentence its set of variables
from the left side includes its set of variables from the right side; there are no
other restrictions on the variables. Associativity of the concatenation may cause
abstract pattern matching to be ambiguous on some patterns4. In the context
of this paper, it is not important how the ambiguousness is actually resolved. It
is sufficient to assume that the pattern matching is done deterministically.

Let a current active function call be given. A step of the REFAL machine is
the following sequence of actions: pattern matching, replacement of the right side
variables with their values – with the result of the pattern matching, replacement
of the active function call (in the function stack) with the updated right side
and labeling of a new function call on the top of the changed stack as active.

Example: The following program replaces every occurrence of the identifier
LISP with the identifier REFAL in an arbitrary REFAL datum.

$ENTRY Go { e.inp = <Repl (LISP REFAL) e.inp>; }
Repl {
(s.x e.v) = ;
(s.x e.v) s.x e.inp = e.v <Repl (s.x e.v) e.inp>;
(s.x e.v) s.y e.inp = s.y <Repl (s.x e.v) e.inp>;
(s.x e.v) (e.y) e.inp = (<Repl (s.x e.v) e.y>)

<Repl (s.x e.v) e.inp>;
}

On the right side of the first sentence of Repl we see the empty expression. The
left sides of the last three sentences and the right side of the second sentence of
Repl show associativity of the concatenation.

Consider a trace of a REFAL computation for the program given above.
Let the computation start with the call <Go (A LISP)>. The REFAL datum
(A LISP) represents a binary tree with the leaves A, LISP. The computation
proceeds with the following steps:

2: <Repl (Lisp REFAL) (A LISP)>
3: (<Repl (Lisp REFAL) A LISP>) <Repl (LISP REFAL)>
4: (A <Repl (Lisp REFAL) LISP>) <Repl (LISP REFAL)>

4 For example, the following equation e.1 e.2 = A B has three solutions: 1) e.1 =

[], e.2 = A B; 2) e.1 = A, e.2 = B; 3) e.1 = A B, e.2 = []; Here [] stands for
the empty expression. In such cases the real REFAL pattern matching takes the
solution with minimal length of the datum taken by the first e-variable (from the
left to the right) and so on by induction (see [43] for the details). In our case the
first solution e.1 = [], e.2 = A B will be chosen.
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5: (A REFAL <Repl (LISP REFAL)>) <Repl (LISP REFAL)>
6: (A REFAL) <Repl (LISP REFAL)>
7: (A REFAL)

Another example is the function append, which can be defined in REFAL in one
line:

append { (e.xs) (e.ys) = e.xs e.ys; }

The LISP style append-function is defined as follows:

LispAppend {
() (e.ys) = e.ys;
(t.x e.xs) (e.ys) = t.x <LispAppend (e.xs) (e.ys)>;

}

A detailed description of the language is available in an electronic format [43]
(see also [30]).

5 Supercompiler SCP4

In this section we present a short introduction to supercompilation process,
as it is implemented in the supercompiler SCP4. More details can be found in
[31,34,32,33].

Consider a program written in some programming language together with a
parameterized input entry of the program. Such a pair defines a partial input-
output mapping f: D 7→ D, where D is the data set of the language. By defi-
nition, a supercompiler is a transformer of such pairs.

The supercompiler SCP4 iterates an extension of the interpretation of RE-
FAL steps (see Section 4), called driving [41], on parameterized sets of the input
entries. Driving constructs a directed tree of all possible computations for the
given parameterized input entry and a given REFAL step. The edges of this tree
are labeled with predicates over values of the parameters. The predicates specify
concrete computation branches and describe the narrowing of the parameters
(unknown data) along the chosen branches5.

Iteration of the driving unfolds a potentially infinite tree of all possible com-
putations. The computations can depend on the values of the parameters that
can be unknown during transformation. The supercompiler reduces in the pro-
cess the redundancy that could be present in the original program. It folds the
tree into a finite graph of states and transformations between possible config-
urations of the computing system. To make a folding possible a generalization
procedure is used. Sometimes it may lead to the loss of some information on the
structure of arguments of configurations.

5 In this sense the driving works similarly to a PROLOG interpreter. Both tools accept
parameters (free variables) as their input data and narrow the parameters.
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If it is not possible to reduce a current configuration (to be developed in the
meta-tree) to a previous configuration (on the path from the tree root to the
latter) then generalization looks for a previous configuration, which is similar to
the current. A homeomorphic embedding pre-order specifies the similarity rela-
tion on the configurations [16,38,31]. Only similar configurations are generalized.
We say the term Current is not less complex compared to the Previous iff the
Previous can be homeomorphically embedded to the Current. If the set of the
basic terms is reasonable enough (see [11,15,16] for the details), then any infinite
term sequence tn has a pair ti, tk such that k > i and tk is not less complex
compared to ti. The property is crucial to ensure termination of SCP4, if all
configurations appearing in the meta-tree are analyzed by generalization (in a
weak strategy of supercompilation).

The aim of specialization is to perform as many actions of the input program
at supercompile-time as possible. The parameterized configurations correspond-
ing to the meta-tree nodes originating single branches can be one-step-developed
uniformly on values of the parameters.

Thus, we emphasize that the output of the supercompiler is defined in terms
of the parameters (semantic objects). The resulting definition is constructed
solely based on the meta-interpretation of the source program rather than by
a step-by-step transformation of the program. The crucial property of the su-
percompilation procedure, that we rely upon in our verification methodology, is

Property 1. The output pair (the residual program and its input entry) defines
an extension of the partial mapping defined by the corresponding input pair.

6 Load Balancing Monitor Protocol

As a case study we consider in this section verification of a multiprocess sys-
tem with a load balancing monitor. The Figure 1 (from [2]) shows an abstraction
of such a system, two different finite automata, one is for the monitor another
for a process. In general, we are interested in parameterized systems, consisting
of an arbitrary number m of processes (here m is a parameter) and a single
monitor. In the initial configuration of the system the processes are in state
req, and the monitor is in state the idle. When the monitor broadcasts the
message swapout (and moves to busy) all processes in the CPU are suspended.
Two different priorities, high and low are assigned non-deterministically to the
suspended processes. When the CPU is released by the monitor (through the
broadcast release), it is assigned to processes with high priority. Processes with
low-priority go back to the request state.

We use a specification of such a parameterized system given in [2] in terms
of Extended Finite State Machines (EFSM)[1]:
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(0) req ≥ 0, use ≥ 0, idle ≥ 0, busy ≥ 0, high ≥ 0, low ≥ 0 → .
(1) req ≥ 1, idle ≥ 1 → req’ = req - 1, use’ = use + 1.
(2) use ≥ 1, idle ≥ 1 → req’ = req + 1, use’ = use - 1.
(3) idle ≥ 1 → idle’ = idle - 1, busy’ = busy + 1,

high’ + low’ = high + low + use,
high’ ≥ high, use’ = 0.

(4) busy ≥ 1 → busy’ = busy - 1, idle’ = idle + 1,
high’ = 0, low’ = 0,
use’ = use + high, req’ = req + low.

req use  idle

highlow
busy

swap_out, swap_in 

swap_in 

swap_out

req

release

swap_in 

swap_out

swap_in

swap_out

req, release

swap_out

swap_in

                                                                  
Process P                                                                                                          Monitor

Fig. 1. Load balancing monitor

Here req,use,idle,busy,high,low are non-negative integer variables of the
EFSM model, which represent counting abstraction of the original parameterized
automata model: the names denote various states of the automaton and the val-
ues of the variables keep track of the number of automata in corresponding states.
The rules (0)-(4) define the dynamics of the EFSM model. Starting with some
initial evaluation of the variables, the system may apply non-deterministically
any of the rules. In the case the guard of a rule (its left-hand part) is satisfied
in a current state (evaluation of all variables, i.e. the integer vector), the update
expressed by the right-hand side of the rule is executed. Primed variable names
are used in updates to denote updated values. Updates may be deterministic,
like use’ = use + 1, or non-deterministic, like

high’ + low’ = high + low + use.

In the latter case execution of an update assigns the values to the variables non-
deterministically, provided they satisfy all constraints of the right-hand side of
the rule. For example in the rule (3) an additional constraint is high’ ≥ high.
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Correctness of the Load Balancing Monitor Protocol specified by the above
EFSM is formulated as follows: the system if started in the initial configuration
where all processes are in state req and the monitor is in a state idle never
reaches a configuration where there coexists processes in states busy and use.

7 Load Balancing Monitor Specification in REFAL

In this section we apply the parameterized testing + supercompilation approach
described above to the verification of the Load Balancing Monitor. To do so we
need to write down a REFAL program, which first simulates the execution of
the protocol (in fact, it may be considered to be an executable specification)
and then tests the correctness condition. The following fragment of the program
defines the function int which is the entry point of the program:

$ENTRY int {
e.p (e.d) =

<fint (e.p) (idle I)(busy )(req e.d)(use )(high )(low )>;
}

It has two input parameters e.p and e.d which according to the REFAL con-
ventions may take arbitrary REFAL expressions as the values. The function int
is defined though only for the inputs of special form. For e.p the only values in
the range of int are of the form (ti1) . . . (tik

), where tij
are expressions labeling

different rules of the above EFSM model. With the exception of the rule (3)
these are just names, whilst for the rule (3) this is a name with an additional
parameter (see definition of the RandomAction function below). The value of the
variable e.d is assumed to be a string of characters each representing a process
in the model. So the length of a string (value of) e.d is a number of processes
in the modeled system. In general, we use the following representation of the
global state of the system by REFAL data:

(e.p) (idle e.1)(busy e.2)(req e.3)(use e.4)(high e.5)(low e.6)

where e.p represents the sequence of remaining rules to be executed, and the
length of the value of each string e.i represents the value of the corresponding
variable (e.g. the length of the value of e.4 is a value of use at any given
moment).

Returning to the definition of the function int, it takes two input parameters
and calls the function fint (reminder: angular brackets denote a function call
in REFAL). The syntactical form of arguments for this call of fint reflects
constraints on the initial configuration of EFSM – the (single) monitor is in
idle state, some processes are in the state req and no processes are in any
other state.

The definition of the function fint contains two sentences: one for quitting
the loop and passing to the correctness testing (first sentence)6 and another for
6 Such a kind of the encoding of the composition is crucial for successful automatic

verification of the protocol.



104 Alexei P. Lisitsa and Andrei P. Nemytykh

making a recursive call of fint with the decremented first argument value and
the current state updated depending on the term t.t. Update is done by the
call to the RandomAction function.

fint {
() (idle e.1)(busy e.2)(req e.3)(use e.4)(high e.5)(low e.6) =

<Test (idle e.1)(busy e.2)(req e.3)
(use e.4)(high e.5)(low e.6)>;

(t.t e.p) (idle e.1)(busy e.2)(req e.3)
(use e.4)(high e.5)(low e.6) =

<fint (e.p) <RandomAction t.t (idle e.1)(busy e.2)
(req e.3)(use e.4)(high e.5)(low e.6)>>;

}

The sentences in the definition of the RandomAction function7 correspond
to the rules of the EFSM model. Since the rule (0) does not do anything (the
system is waiting with no changes in its global state) and we are going to verify
a safety property, we can safely omit this rule from the REFAL specification8

RandomAction {
* r1
(r1) (idle I e.1)(busy e.2)(req I e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req e.3)(use I e.4)
(high e.5)(low e.6);

* r2
(r2) (idle I e.1)(busy e.2)(req e.3)(use I e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req I e.3)(use e.4)
(high e.5)(low e.6);

* r3
(r3 e.r3) (idle I e.1)(busy e.2)(req e.3)(use e.4)

(high e.5)(low e.6) =
(idle e.1)(busy I e.2)
<RandomDistribution (r3 (low_use e.4 e.6) e.r3)

(req e.3)(use )(high e.5)(low e.6)>;
* r4
(r4) (idle e.1)(busy I e.2)(req e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req e.3 e.6)(use e.4 e.5)
(high )(low );

}

As an example consider the case when RandomAction is called with argu-
ments matching the left-hand side of the first rule. Then the call will return
the (representation of) global state expected after application of the rule (1).

7 Here the asterisk sign stands for one line comment.
8 Leaving this rule in place and providing suitable REFAL translation would not do

any difference in the verification.
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Further, it is straightforward to check that the left-hand sides (resp. right-hand
sides) of sentences commented as *r1, *r2, *r4 implement guards (resp. de-
terministic updates) of the corresponding EFSM rules (1), (2), (4). The rule
(3) is more involved because of its non-deterministic update. Its implementa-
tion by the sentence *r3 of RandomAction definition uses an additional call to
function RandomDistribution, the definition of which is as follows:

RandomDistribution {
(r3 (low_use I e.lu) (high_low I e.hl))

(req e.3)(use e.4)(high e.5)(low e.6)
= <RandomDistribution (r3 (low_use e.lu)(high_low e.hl))

(req e.3)(use e.4)(high I e.5)(low e.6)>;

(r3 (low_use e.lu) (high_low ))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low e.lu e.6);

(r3 (low_use ) (high_low e.hl))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low e.6);
}

The function RandomDisribution implements the non-deterministic update
high’+low’ = high+low+use with the constraint high’ ≥ high. The latter con-
dition may be reformulated as high’ = high + delta for some non-negative
integer value delta. Then we have low’ = low + use - delta. The last two
conditions can be considered as almost deterministic updates, where the only
non-determinism remaining is concerning the value of delta. Consider the defi-
nition of RandomDistribution. Following the same convention for representing
integer variables by REFAL data it introduces two auxiliary integer variables9

low use and high low. When RandomDistribution is called within the *r3 sen-
tence of RandomAction the variable low use gets the value use+low (in REFAL
terms on the left-hand side of the *r3 we have (use e.4) and (low e.6) and on
the right-hand side (low_use e.4 e.6)). As to the high low variable its value
represents the above delta. Where does it come from? Inspection of definitions
of all functions defined so far shows that the value of high low is passed via
parameters e.r3 of RandomAction, t.t of fint and e.p of int.

Consider now computation of RandomDistribution in terms of integer vari-
ables. It starts10 with low use = use + low. If low use ≥ 1 and high low ≥ 1,
both low use and high low are decremented by 1, high is incremented by 1 and
RandomDistribution is recursively called (the first sentence of definition).

If high low hits 0 then the call returns with low’ = use + low - high low
and high’ = high + high low as required (the second sentence).
9 Here we mean integer variables in a sense of the EFSM model, not REFAL variables.

Integer variables low use and high low are presented by REFAL terms (low use . . .)
and (high low . . .).

10 When called from the *r3.
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If, however, low use hits 0 first (the third sentence) that indicates the value
of high low is incorrect (high low > low+use), but the call returns the still
correct update: low’ = 0 and high’ = high+low+use.

Correctness condition. Finally, the definition of the function Test embodies
the correctness conditions of the protocol (compare with the definition of safety
properties in Section 6).

Test {
(idle e.1)(busy I e.2)(req e.3)(use I e.4)

(high e.5)(low e.6) = FALSE;

(idle e.1)(busy e.2)(req e.3)(use e.4)
(high e.5)(low e.6) = TRUE;

}

The function Test returns FALSE if called on a configuration with busy ≥ 1
and idle ≥ 1, in all other cases it returns TRUE.

Taking all above definitions together we get a REFAL program

int(e.p, e.d)

which simulates execution of the Load Balancing Monitor system with one moni-
tor and k (= the length of the value of e.d) processes for n steps (= the length of
sequence (ti1) . . . (tin

), the value of e.p) and then tests the correctness condition.

8 Verification via Supercompilation

Now we apply the supercompiler SCP4 to the program int(e.p, e.d) (with
the parameterized entry point). That is to say, we specialize the interpreter fint
with respect to partial known data, while the program e.p is unknown:

<fint (e.p) (idle I)(busy )(req e.d)(use )(high )(low )>

Here we treat the fint-interpreter as an interpreter of the programming language
L defined by the protocol rules: each program is a finite sequence of the actions
evaluating the protocol. Notice that not all actions are applicable to all protocol
states; an attempt of execution of a non-applicable action leads to an abnormal
stop of the program. The simplest language L has a functional aspect: calls
for the action r3 have arguments e.r3. I.e. this action may be considered as a
function transforming both the global (the global protocol state) and local (the
value of the e.r3) memory.

The residual program is given in the Appendix A. At first glance the resulting
program does not look much simpler than the original one and definitely it is
much less comprehensible. However, it is now simple to check the entire resulting
program unlike the original one does not contain the operator return FALSE.
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That means whatever values input parameters are given, the program will
never return FALSE. Since the resulting program is equivalent to the original one
on the domain of the original program and the original program is never looping
forever, we conclude that original program will also never return FALSE. That
implies the correctness of the encoded parameterized protocol.

8.1 On Associativity of the Concatenation

An interesting question arises here: how does the associative property of the
REFAL concatenation matter in the successful verification of the LBM protocol?
And a more general question is: how does the associative property influence
the transformation power of the supercompiler SCP4? In fact the questions are
questions on language dependence of results of verification.

The answer is as follows. On the one hand associativity of the concatenation
simplifies the structure of the programs encoding the models of the protocols.
There exist no loops just adding stepwise the terms forming the expressions (i.e.
the loops modify in no way the terms). As a consequence the analysis of such
a potentional loop is shifted to purely syntactic structures of the correspond-
ing configurations representing such concatenation and may be done much more
precisely compared to the concatenation loops, which (of course) are in no way
marked out by specific syntax and hence, in general, are algorithmically un-
recognizable as loops encoding concatenation. On the other hand the algorithm
generalizing the configurations during supercompilation becomes ambiguous: the
non-trivial relation imposed on the object terms has to be taken into account.

We may imitate the LISP style concatenation by means of the LispAppend
function defined in Section 4. The LISP style program encoding the LBM pro-
tocol is as follows:

RandomAction {
.........

* r3
(r3 e.r3) (idle I e.1)(busy e.2)(req e.3)(use e.4)

(high e.5)(low e.6) =
(idle e.1)(busy I e.2)
<RandomDistribution

(r3 (low_use <LispAppend (e.4) (e.6)>) e.r3)
(req e.3)(use )(high e.5)(low e.6)>;

* r4
(r4) (idle e.1)(busy I e.2)(req e.3)(use e.4)(high e.5)(low e.6)

= (idle I e.1)(busy e.2)(req <LispAppend (e.3) (e.6)>)
(use <LispAppend (e.4) (e.5)>)(high )(low );

}
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RandomDistribution {
.........

(r3 (low_use e.lu) (high_low ))
(req e.3)(use e.4)(high e.5)(low e.6)

= (req e.3)(use e.4)(high e.5)(low <LispAppend (e.lu) (e.6)>);
.........

}

Where we omitted sentences and functions coinciding with the REFAL style
encoding.

The result of specialization by the supecompiler SCP4 once again does not
contain the operators return FALSE;, which in REFAL terms have to be rep-
resented just as the symbolic constant FALSE. Thus the SCP4 succeeds in veri-
fication of the LISP style encoding the LBM protocol.

9 Discussion and Further Directions

The correctness of the method is heavily based on the crucial Property 1 of
supercompilers. It has been shown, in particular in [38,40,37] that (variants of)
supercompilation is a correct transformation, in a sense it always returns (if any)
the program equivalent to the input program (on the domain of the latter). So
the answer for the above question is positive if the SCP4 indeed implements
correctly the supercompilation process as it is described in the above papers.
This however is not a trivial question, especially because of the specific semantic
assumptions of REFAL, like built-in associativity of concatenation as a term
forming construct.

We incorporated a call for the Test into the body of fint (in its first sen-
tence) to organize the composition TQ(fintS(n, p̄)) (Section 7). Such a kind of
encoding of the composition is crucial for successful automatic verification of the
LBM protocol. Another important point allowing us to successfully verify the
protocol is the following property of the testing function Test: the number of its
REFAL steps is uniformly bounded on the size of the input data of the function.
In fact in our case there is just a single step. That would be very interesting to
bring a protocol with a safety property not satisfying such a uniform condition
to successful verification via supercompilation. The simple protocols given in the
survey [14] in terms of counter machines seem to be good candidates to try.

With the point of view of strengthening the supercompilation algorithm
based on associative concatenation, it is very important to implement Makanin’s
algorithm solving string equations [26]. In our opinion, implementation of Khme-
levskĭi’s algorithm [12] (working only with such equations with three variables)
and using this algorithm for handling of restrictions (see [41,44,32,33]) could
lead to solution (by supercompilation technology) of new very interesting tasks.

We would like to say again that despite simplicity of the languages generated
by the protocols (and, what is more, due to their algorithmic incompleteness), au-
tomatic specialization of their interpreters opens very interesting and important
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problems leading to more fundamental understanding of the nature of program
specialization (Section 1). An extension of the class of the protocols and their
properties to be successfully verified is a very attractive task. Here we mean
both automatic verification per se and specialization of the interpreters of the
algorithmic incomplete programming languages generated by the protocols. We
have to point to a class of elementary algorithms [13,27], which (as far as we
know) was still never studied in the context of specialization of its interpreters.

An interesting direction for future work would be to modify supercompiler so
that during supercompilation process within the parameterized testing scenario
it would produce an inductive proof of safety properties. For any particular
successfull verification then one can check the produced inductive proof by a
simple proof checker.

Another important direction is to establish completeness results for classes
of verification problems and particular strategies of the supercompiler and to
compare the method with other verification methods based on program trans-
formations [7,17,18,36].

Acknowledgements. The authors thank anonymous referees for several in-
sightful comments that led to a substantial improvement of the paper.
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Appendix: Residual Program

* InputFormat: <int e.41>

$ENTRY int {

e.41 (e.101) = <F5 (e.41 ) e.101>;

}
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* InputFormat: <F115 (e.146) (e.147) (e.148) (e.149) e.150>

F115 {

(e.146) (I e.147) (I e.148) (e.149) e.150

= <F115 (e.146 ) (e.147) (e.148) (e.149) I e.150>;

() (e.147 ) () (e.149 ) e.150 = TRUE;

((r4 ) e.146) (e.147) () (e.149) e.150

= <F24 (e.146) (e.149 e.147) e.150>;

() () (e.148) (e.149) e.150 = TRUE;

((r4 ) e.146) () (e.148) (e.149) e.150 = <F24 (e.146 ) (e.149 ) e.150>;

}

* InputFormat: <F35 (e.109) (e.110) e.111>

F35 {

() (e.110) e.111 = TRUE ;

((r1 ) e.109) (e.110) e.111 = <F24 (e.109) (e.110) e.111>;

((r2 ) e.109) (e.110) I e.111 = <F35 (e.109) (I e.110) e.111>;

((r3 (high_low I e.121)) e.109) (e.110) I e.111

= <F115 (e.109) (e.111) (e.121) (e.110)>;

((r3 (high_low ))) (e.110) e.111 = TRUE ;

((r3 (high_low )) (r4 ) e.109) (e.110) e.111

= <F5 (e.109) I e.110 e.111>;

((r3 (high_low e.121 ))) (e.110) = TRUE;

((r3 (high_low e.121 )) (r4 ) e.109) (e.110) = <F5 (e.109) I e.110>;

}

* InputFormat: <F24 (e.109) (e.110) e.111>

F24 {

() (e.110) e.111 = TRUE;

((r1 ) e.109) (I e.110) e.111 = <F24 (e.109) (e.110) I e.111>;

((r2 ) e.109) (e.110) e.111 = <F35 (e.109) (e.110) e.111>;

((r3 (high_low I e.144)) e.109) (e.110) e.111

= <F115 (e.109) (e.111) (e.144) (e.110)>;

((r3 (high_low ))) (e.110) e.111 = TRUE;

((r3 (high_low )) (r4 ) e.109) (e.110) e.111

= <F5 (e.109) e.110 I e.111>;

}

* InputFormat: <F5 (e.41) e.101>

F5 {

() e.101 = TRUE;

((r1 ) e.41) I e.101 = <F24 (e.41) (e.101)>;

((r3 (high_low ))) e.101 = TRUE;

((r3 (high_low )) (r4 ) e.41) e.101 = <F5 (e.41) e.101>;

((r3 (high_low e.163))) e.101 = TRUE;

((r3 (high_low e.163)) (r4 ) e.41) e.101 = <F5 (e.41) e.101>;

}
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1 Introduction

In this paper we present a novel approach to detection of metamorphic computer
viruses by using proving program equivalence based on program transformation
technique known as supercompilation [7]. Proving program equivalence is an
undecidable problem in the general case; however, in specific cases we may find
decidable or semi-decidable procedures that can prove that a sub-class of pro-
grams are equivalent. This is of relevance for detecting metamorphic computer
viruses, which use a variety of semantics-preserving, syntax-mutating methods
for code obfuscation. The main purpose of this obfuscation is to avoid detection
by signature scanning. An important factor here is that semantics is preserved;
therefore, if we can prove using some procedure that two different programs are
equivalent, then in principle we can detect metamorphic computer viruses using
this procedure.

The supercompilation1 is a semantic based program transformation tech-
nique [7] for functional programming languages proposed by V. Turchin in the
early 1970s. A variant of symbolic execution is used for the transformation: the
program is executed with a partially defined input and that leads to the unfold-
ing a potentially infinite tree of all possible computations of the parameterized
program. In the process the tree of configurations is analysed and folded into
the finite graph of parameterized configurations and posible transitions between
them. To make folding possible a generalization procedure can be used. Finally,
the supercompiler analyses the graph and builds the definition of output program
based on that. Thus, a supercompiler implements the mapping 〈P, e〉 7→ 〈P ′, e′〉,
where P, P ′ are programs and e, e′ are their corresponding parameterized entry
points. The result of supercompilation, in general, implements an extension of
the (partial) function implemented by the original program, i.e. P ′ produces the
same outputs on the inputs for which P terminates, but may terminate on some
inputs for which P does not. The primary purpose of supercompilation is for
specialization and optimization of the programs. In Lisitsa & Nemytykh [3] it
has been shown that it can be used for verification as well.

? A version of this paper has been presented at the Workshop on the Theory of Com-
puter Viruses, 2008, Nancy, 15.05.2008

1 from supervised compilation
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Here we notice that due to the fact that resulting program is produced from
a behavioural graph of possible computations (without referring to the origi-
nal syntax) supercompilation can be seen also as, behavior-based normalization
procedure2, potentially applicable for the equivalence testing.

Development of supercompilation have been done mainly in the context of
functional programming language Refal of Turchin [8] and SCP4 of Nemytykh
& Turchin [5,6] is the most advanced supercompiler for Refal.

There are many methods of detecting metamorphic computer viruses in the
literature. Our approach bears some similarity to the work of Webster & Mal-
colm [10,9] on detection of metamorphic computer viruses using algebraic spec-
ification, in which a specification of Intel 64 was given using Maude. The two
approaches are similar in that the specification of Webster & Malcolm and the
interpreter here use a notion of stores in the definitions of the semantics of the
Intel 64 language. The approaches differ, however, in that the algebraic specifi-
cation of Webster & Malcolm is based on a formal syntax and semantics of Intel
64, and the values of various variables are queried using rewriting, whereas the
semantics of Intel 64 is specified informally in our work, and the supercompiler
is used to optimise the evaluation function parameterised by a specific program.

Our approach is also similar to the program rewriting/normalisation ap-
proach of Bruschi et al [1,2], as supercompilation essentially rewrites a function
corresponding to the execution of a program. Although the supercompilation is
not strictly a normalisation procedure, as we cannot guarantee that in all cases
two equivalent programs will have the same normal form, the process resembles
normalisation as two functions representing different equivalent programs may
be rewritten to the same form.

2 Supercompilation for Detection

Supercompilation is a program transformation process that traces possible gen-
eralized histories of a program in an attempt to reduce redundancy. As we will
show, we can use the supercompilation process to produce supercompiled ver-
sions of metamorphic code fragments that are identical. This is useful for the
detection of metamorphic computer viruses, which can be acheived by proving
equivalence of a metamorphic computer virus signature to some suspect code
fragment. We understand equivalence for two programs as equality of partial
fucntions (mapping inputs to outputs, or inital states to the final states) imple-
mented by programs.

Our technique uses a supercompiler for Refal called Scp4 [5]. We define the
semantics of Intel 64 instructions operationally using Refal. Essentially, the result
is a general-purpose interpreter for the Intel 64 instructions3 we have defined.

2 At the moment we suggest this reading as semi-formal. Determining precise con-
ditions under which supercompilation would be a normalization procedure is an
interesting problem for future investigations.

3 At the moment only a small subset of instructions is covered.
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Our interpreter can be found in the Appendix. If we pass a program as a pa-
rameter to the interpreter, the result is an emulation of that Intel 64 program in
Refal. We can therefore apply Scp4 to the emulation in order to eliminate redun-
dancy in the program. If two syntactically-different programs are supercompiled
to the same form, we can conclude that the programs must be equivalent (under
additional assumption that both programs terminate on all inputs). If programs
may not terminate on some inputs then equality of residual programs provides
only partial evidence for equivalence on a subset of inputs.

Example 1. The following two programs have the overall effect of assigning the
value 5 to the variable eax, 6 to the variable ebx and 1 (or “true”) to the zero
flag of the EFLAGS register:

p1 = mov eax,5; move ebx,5; cmp eax,ebx; move ebx,6

p2 = mov ecx,4; move eax,1; mov ebx,0; label 2: cmp eax,ebx;

je 1; mov eax,5; label 1: move ebx,6; loop 2

We can imagine p1 as part of the zeroth generation of a metamorphic computer
virus, and p2 as some obfuscated form. Applying the supercompiler to the in-
terpreter twice, once for each program, results in the same supercompiled Refal
program:

$ENTRY Go {
(e.101 )(e.102 ) (e.103 ) (e.104 ) =
(eax 5 ) (ebx 6 ) (ecx ) (Zflag 1);

}

In each case, the supercompiler has optimised the interpreter, parameterised
with programs p1 and p2 to the same Refal program, which simply assigns the
values 5, 6 and 1 to the variables eax, ebx and Zflag 4. Essentially, we have
translated p1 and p2 into Refal, and the supercompiler has then shown the
translated forms to be equivalent. If one of these programs was our signature,
and the other was the suspect code, then this technique could be used to detect
a metamorphic computer virus. More examples can be found in [4].

3 Conclusion

In a practical setting, e.g., within an anti-virus software package, we assume that
code fragments for equivalence analysis will be extracted and presented before

4 For simplicity of presentation, as it is the only place where arithmetic involved
at the moment, we treat the values of counter register ecx differently from other
registers. In the interpreter the values of ecx are modelled by unary strings and
decrement operation is defined accordingly. Under such a convention the residual
program assigns the value 0 to ecx register (as expected).
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supercompilation. The supercompiler will then run with the two fragments as
input, and the output of the supercompiler will be analysed in order to deter-
mine whether the two fragments are equivalent. This analysis, in the ideal case,
is trivial: for example, the supercompiler could simply return the value “true”
iff the two fragments are found to be equivalent. In the case where one frag-
ment is a signature of a metamorphic computer virus, and the other fragment
is some suspect code, then the positive identification of equivalence will indicate
infection of the suspect code by that virus. Of course, this procedure is prone to
false negatives in the case where the supercompilation process has not identified
equivalence.

Future work will include an expansion of the Intel 64 instruction subset used,
and an application to the detection of real-life metamorphic computer viruses.
In addition, we intend to establish the theoretical constraints on our approach.
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4 Appendix. An interpreter of a subset of Intel 64
instruction set in Refal

*$MST_FROM_ENTRY;

*$STRATEGY Applicative;

*$LENGTH 3;

*$MATCING ForReapeatedSpecialization;

* A STORE is a list of variable-value pairs, e.g.

* (eax 0) (ebx 1) (ecx 2)

* entry point for the interpreter executing program p_2 from Example 1

$ENTRY Go {(e.1) (e.2)(e.3)(e.4) =

<Exec ((control)(mov ecx (const I I I))(mov eax (const 1))(mov ebx (const 0))(label 2)

(cmp (reg eax)(reg ebx))(je 1)(mov eax (const 5))

(label 1)(mov ebx (const 6))(loop 2))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4)>;

}

* execute statement list

Exec {

* Execute jmp

* jump forward

(e.1 (control)(jmp e.label) e.2 (label e.label) e.3) e.store =

<Exec (e.1 (jmp e.label) e.2 (label e.label)(control) e.3) e.store>;

* jump backward

(e.1 (label e.label) e.2 (control)(jmp e.label) e.3 ) e.store =

<Exec (e.1 (label e.label)(control) e.2 (jmp e.label) e.3) e.store>;

*Execute mov

(e.1 (control)(mov e.2 e.3) e.4) e.store =

<Exec (e.1 (mov e.2 e.3)(control) e.4)

<mov (e.2 e.3) e.store>>;

*Execute cmp and set Zflag

(e.1 (control)(cmp (e.2) (e.3)) e.4) e.store =

<Exec (e.1 (cmp (e.2) (e.3))(control) e.4)<cmp ((e.2) (e.3)) e.store>>;

*Execute je

*If Zflag is 1, jump forward

(e.1 (control)(je e.label) e.2 (label e.label) e.3) e.4 (Zflag 1) =

<Exec (e.1 (je e.label) e.2 (label e.label)(control) e.3) e.4 (Zflag 1)>;

*If Zflag is 1, jump backward

(e.1 (label e.label) e.2 (control)(je e.label) e.3) e.4 (Zflag 1) =

<Exec (e.1 (label e.label)(control) e.2 (je e.label) e.3) e.4 (Zflag 1)>;

*If Zflag is 0 Skip

(e.1 (control)(je e.label) e.2) e.3 (Zflag 0) =

<Exec (e.1 (je e.label)(control) e.2) e.3 (Zflag 0)>;

*Skip the label

(e.1 (control)(label e.label) e.2) e.store =

<Exec (e.1 (label e.label)(control) e.2) e.store>;

* Execute "loop label1": decrement counter register ecx,

* check if counter register is 0, if

* yes go to the next instruction, if not

* go to label1.
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* The integer value of the counter ecx is presented in the unary form II...III.

* Only positive values are correctly dealt with

* Exit the loop

(e.1 (control)(loop e.label) e.2) e.3 (ecx I)(Zflag e.5) =

<Exec (e.1 (loop e.label)(control) e.2) e.3 (ecx)(Zflag 1)>;

* Go to the label backward

(e.1 (label e.label) e.2 (control)(loop e.label) e.3) e.4 (ecx I I e.ecx)(Zflag e.5) =

<Exec (e.1 (label e.label)(control) e.2 (loop e.label) e.3) e.4 (ecx I e.ecx)(Zflag 0)>;

* Go to the label forward

(e.1 (control)(loop e.label) e.2 (label e.label) e.3) e.4 (ecx I I e.ecx)(Zflag e.5) =

<Exec (e.1 (loop e.label) e.2 (label e.label)(control) e.3) e.4 (ecx I e.ecx)(Zflag 0)>;

*End of the statements list, nothing to execute

(e.1 (control))e.store = e.store;

}

* Effects of mov execution

mov {

(eax (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.1)(ebx e.3)(ecx e.4)(Zflag e.5);

(eax (reg eax))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4);

(eax (reg ebx))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.2)(ebx e.2)(ecx e.3)(Zflag e.4);

(ebx (reg eax))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.1)(ecx e.3)(Zflag e.4);

(ebx (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.1)(ecx e.4)(Zflag e.5);

(ecx (const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.3)(ecx e.1)(Zflag e.5);

}

* Effects of cmp execution

cmp {

((reg eax)(reg ebx))(eax e.1)(ebx e.1)(ecx e.2)(Zflag e.3) = (eax e.1)(ebx e.1)(ecx e.2)(Zflag 1);

((reg eax)(reg ebx))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag 0);

((reg eax)(const e.1))(eax e.1)(ebx e.2)(ecx e.3)(Zflag e.4) = (eax e.1)(ebx e.2)(ecx e.3)(Zflag 1);

((reg eax)(const e.1))(eax e.2)(ebx e.3)(ecx e.4)(Zflag e.5) = (eax e.2)(ebx e.3)(ecx e.4)(Zflag 0);

}
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1 Introduction

Having designed a computer algebra library DoCon [Me1], we try to extend this
system with the ability of automatic reasoning. In this paper we shortly describe
the aims and the design principles of our program system for this project.

1.1 The Aim of the Project

The aim is to develop an efficient proof assistant for providing proof certificates
for the areas of (1) mathematics, (2) functional programming, (3) digital device
analysis.

We need to keep in mind that the general problem of the proof search is
algorithmically undecidable. So far, we presume that a human researcher does
the main parts of the proof search, the ones which need more ingenuity, and
orders the program assistant to fill the “technical” parts with detailed proof.
This process is iterated. This approach should lead to the two benefits:
(1) human effort economy in solving problems, (2) proof certificate.

It is known from mathematical logic that each mathematical proof can be
unwind to a sequence of elementary steps. Each elementary step is similar to the
following: to superpose two formulae (equations) by substituting appropriate

? This work is supported by the Program of Fundamental Research of the Russian
Academy of Sciences Presidium (“Razrabotka fundamentalnykh osnov sozdaniya
nauchnoj raspredelennoj informatcionno-vychislitelnoj sredy na osnove tekhnologij
GRID”).
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expressions for universally quantified variables, and to derive by this another
formula (Robinson’s resolution in mechanized reasoning). A proof certificate is
a symbolic code consisting of elementary steps of this kind. This is a matter
of a program assistant: to obtain the details of certificate and also to check
automatically a certificate of a proof or program provided with such by any
other system — if this system supports the certificate standard. A certificate
guarantees the truth of the statement and that there is no error in the proof.

But to be really usable, such a proof assistant needs

– to “understand” a high-level object language which is close to the human
mathematical language,

– to be able to incorporate and use an algorithm and knowledge library for
each domain of application,

– to have a powerful proof search strategy, in order to make the automatic
proof search part possibly greater (for we think, in the practice of modern
assistants, more than 99 % of the effort is by human).

1.2 About our Approach in General

The object language of our system is of the many-sorted term rewriting and also
of the predicate calculus. An object program (subjected to verification) is repre-
sented as a set of rewrite rules. We represent a knowledge about a computation
domain in the form of equations and apply the technique of many-sorted term
rewriting. The predicate calculus statements also convert to equations (in the
proof by contradiction) represented as Boolean terms. This enables refutational
proofs via completion. The inductive inference is applied for the proofs in the
initial model, and it cooperates with completion in a natural way.

As to application to programming: inductive proofs for programs correspond
to establishing truth in the initial model for a set of equations [Hu:Op].
Introductory reading [K:B], [Hu:Op], [Hsi:Ru], and [Lo:Hi] introduce to term
rewriting (TRW) and its completion method. [Sti] explains unification modulo
associativity and commutativity, which leads to AC-completion (implemented
in our prover). [Hsi] describes how TRW (with extension to Boolean terms)
is applied to refutational proof in predicate calculus. [Bu:Al] and [Bu2] present
explanations about language and a program system Theorema for proof assistant
which looks as the most advanced modern project of this kind. Another two
assistant examples: Coq, Isabelle.

Our prover and the DoCon library are implemented in the Haskell language.
Our prover is called Dumatel. This joke Russian word is taken from the
novel “Skazka o troike” by the brothers Strugatsky, and it can be translated
as “thinker”.

Dumatel is a library of Haskell functions and structures.
About other projects There exist many prover systems. We pay attention to
theoretic principles, preferring to implement them in our own system — due to
desired interface to our computer algebra library, and due to other reasons. The
main particular points of our prover design are the following.
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– The intention to express, as possible, all knowledge via equations and TRW.
– Extension of “unfailing” completion to Boolean terms, with a particular

treatment of order on monomials.
– Proof by cases, combined in a special way with completion.
– A particular procedure for the search of a useful lemma for inductive proof.
– The resource distribution approach in the proof search.
– Symbolic representation of a proof search state by an explicit tree data.

We use the following abbreviations and denotations:
AC — associativity and commutativity, BT — Boolean term (with &, xor);
CA — computer algebra, ground term — a term free of variables;
IL, OL — (respectively) implementation language and object language;
TRW — term rewriting, ukb(b) — unfailing Knuth-Bendix completion;
&, |, xor, ==> — Boolean connectives “and”, “or”, exclusive “or”, implica-
tion;
‘‘==’’ is the syntactic equality on terms; =E= is the equivalence relation on
terms defined by the set E of equations contained in a calculus.
“Proof (of a statement) in initial” means (as standard) a proof of this statement
for the initial model of the considered calculus (theory).

2 The Prover Principles and Design

Programming system and languages So far, we choose Haskell as implementa-
tion language. Here we shall call it IL, for generality. The prover is a program
written in IL which processes specification data. A specification represents a
calculus in the object language (OL) of many-sorted equational specification.
Representation of a proof goal This is a data g :: Goal of IL containing
1) a calculus calc = goalCalculus g, 2) the statement f = goalFormula g

(in the predicate calculus language) which needs to be proved in calc,
3) the kind mode = goalMode g of the truth and proof: InVariety or InInitial.
Proof search state, representation of proof search
The prover has a set StepKinds of a few search step kinds (attempt kinds),
each one presenting a particular method for an attempt to find a proof from the
current search state (Dumatel-1.06 has 5 main search step kinds). Each attempt
is restricted by the resource rcPerStep measured in a certain conventional unit.
When this resource is exhausted, the attempt stops, returning the current state.

The search state is represented by the IL data ProofSearchState. This is
a tree which has sub-goals as nodes, and as edges it has search steps, where
each attempt stores its current state. When the sub-goal is proved, it is replaced
with the true node, and all the tree simplifies according to the meaning of each
edge. The proof success is expressed by the tree of a single node containing the
formula true. The current (large) action loop of the proof search is: choosing
of an appropriate leaf in the search state tree and either continuing the attempt
stored in this leaf or adding another (appropriate) attempts (with new edges)
to this leaf. The new state is appended to the list of search states. So, the



122 Sergei D. Mechveliani

intelligence of the proof search strategy depends only on how wisely it selects
the current leaf, search step kind, and parameters for this step.

Each node in the search tree has the kind: All or Any. ‘‘All’’ means that
the truth of the statement in this node is conjunction of the statement truth of
each of the “sons” of this node. ‘‘Any’’ means disjunction of their truth. When
a node is proved, the tree simplifies according to the kind of each node.
Prover This is the IL function prove which takes an initial search state and
appends to it the list of the search states built according to the strategy. The
default strategy for the proof search is: develop the state tree by search in breadth.
The result list can be printed out. The printing formats allow the user to see the
search progress with skipping details or in a more detail. The time being taken
by each such an attempt is restricted by the given resource rcPerStep.

If the search fails, the result state list may unwind infinitely. Concerning this,
we keep in mind that evaluation in Haskell is “lazy”. Also it is always possible
for a client function to apply the function prove and take first n states from
its result.
The resource distribution approach Each method in a search step has the re-
source limit rcPerStep. Such a method calls for various sub-functions: comple-
tion procedure, trying substitutions with constants, recursive calls of the prover,
and so on. Many of these sub-functions take an additional argument rc — a
resource bound to be spent. Such a function also returns the remainder rc’ of
the resource. If this value occurs non-zero, the prover adds it when calls other
sub-functions. The idea of this approach is to prevent the strategy from running
into infinity in an unlucky search step. For example, the search step by comple-
tion may loop infinitely for some data, and it is impossible to uniformly predict
when it will occur infinite.
Trace data for proof certificate Most of the prover functions take the trace data
among the arguments and accumulate it in the result. For example, the function
reduce returns the result term and also the trace sequence of the reduction:
which current term is reduced to which term by applying which equation, etc.
This is a provision for the proof certificate. Because an automaton can check the
proof by applying one by one the elementary steps returned in the trace. Again,
the “laziness” of Haskell is very useful here. Because if the client function does
not use the trace, then the trace part of the result does not spend memory nor
time.
Parts of a calculus A calculus consists of description of several sorts, operators,
variables, rules, equations, BT (converted skolemized formulae), description of
a term ordering ‘‘>>’’ and its operator precedence. We use here a “sugar”
operator declaration which is not yet implemented. For example,

_+_ : Natural Natural -> Natural ...

means a binary infix operator on the sort Natural.
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2.1 Rules, Equations, Term Ordering, Reduction

The list rules is an OL program. The interpreter evaluate calc t evaluates
this program, contained in the rules part of the calculus calc, at the data term t
as usual in rewriting programming, and with treating variables in t as constants.
This evaluation is required to terminate.

A partial term ordering ‘‘>>’’ is an IL function to compare terms. It de-
pends on the operator precedence table. It must satisfy the restrictions formu-
lated in [Hsi:Ru]. The equation set in a calculus is often not Church-Rosser, and
the prover does not rely on any particular order of applying equations. Instead, it
exploits that unfailing completion is directed to a ground Church-Rosser equation
set. Equations and rules must define the same equivalence relation =E= on terms.
Often the initial equations appear as converted from the rules by re-orienting
the rule sides according to the TRW ordering. The reduction by equations and
equation superposition are subdued to the TRW ordering [Hsi:Ru]. The function
reduce calculus t, reduces a term t to the normal form by equations under
the given term comparison.

With equations, it is possible to do program computation as well as reasoning.
Also the program evaluation can be modeled (at a cost overhead) by setting ap-
propriate ordering and applying the function completeAndReduce. This method
intermingles unfailing completion and “ordered” reduction.

2.2 Boolean Terms

BT represent skolemized predicate calculus formulae in the form of Zhegalkin
polynomials f. They have the meaning of the Boolean equation f = 0
(= false). We prefer to use BT, with special unification and superposition
methods for BT, because the connectives & and xor have more properties than
just being AC operators, and we like to use these properties in forming super-
positions. For example, the cancellation law for xor holds.

In our system, BTs appear in the calculus as in the following example (in the
Section 3). The formula forall [X,Y] (X > Y ==> not (Y > X)) specified for
the calculus list is converted to the equation (not (X > Y) | not (Y > X)) +

1 = 0, and then, to the BT (X > Y)&(Y > X) (a monomial). This conversion
is based on the correspondence

0 <-> false, 1 <-> true, & <-> multiplication, + <-> xor, (+1) <-> not.

A BT is a (commutative) sum of several different monomials. Each mono-
mial is a (commutative) product of several different atoms. A monomial has an
integer modulo 2 as its coefficient. The law A & A = A holds here. In the refu-
tational proof, the prover applies the formula negation, skolemization, bringing
to a conjunctive normal form. The disjuncts are converted further to BTs. The
obtained BTs are added to the calculus, and there applies completion, with the
aim to derive a BT true, which stands for the equation true = false.
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2.3 Completion

Its function ukbb rc calc goals <other arguments> is designed after the
principles by [Hsi:Ru] and also applies various optimizations. It is also extended
to process Boolean equations in the form of BT. The method’s ideology for the
BT part is of the RN+ strategy by [Hsi]. The procedure also applies intermediate
reduction of goals. Completion stops when the resource is zero, or all the goal
facts are reduced to trivial or the current set of the facts is complete. In returns
a set of facts and the resource remainder rc’.

We also apply certain optimizations: with a special ordering on b-monomials,
a stronger reduction relation on BT, and others.

2.4 The Search Step Kinds

They are
(pCp) positive goal completion and reduction (always pre-applied),
(cnf) bringing to conjunctive normal form (always pre-applied),
(arC) proof by substituting arbitrary constants for variables,
(ec) proof by parting equational conditions from implication,
(nCp) negation (, skolemization) and refutation by completion and cases,
(ind) induction by an expression value — for a universally quantified formula

and the goal mode InInitial.
(lsi) proof by searching lemmata

(LSI abbreviates “Lemma Search for Initial model”).

(pCp) performs a limited number of completion steps, together with reduc-
tion of the formula. If the formula simplifies to true, then the goal is proved and
deleted.
Induction by an expression value (ind): when in a given calculus a sort S is
attributed with the annotation GeneratedBy <list of operators>, (for
constructing ground terms of this sort), the prover recognizes the correctness of
proving a statement for S by induction by the sort construction with the given
operators. The prover tries various expressions for induction by their value. In
the current version, an expression for induction can be only a variable from the
list under the ‘‘forall’’ construct in the goal formula.

We skip here explanation for the inference rules arC, ec. Let us describe
shortly the remaining rules of nCp and lsi.
Refutation by completion and cases
The functions refuteByCompletion, proveByNegationAndCompletion im-
plement the inference rule (nCp). A calculus specification may contain a con-
struct for finite enumeration of a sort with constants. And the above two refu-
tation procedures rely on such construct. For example, the library calculus bool
provides the enumeration [true, false] for the domain Bool. For expressing
such enumeration, the prover has the construct

FiniteEnumeration S [c_1,...,c_n].
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Its meaning is: only those models are taken in account for the proof, in which
each value of the sort S coincides with some value listed in the enumeration.
Respectively, the refutation applies completion together with equating the enu-
meration constants to the selected terms. Half of the resource is spent on the
attempt by completion only. If this fails, the remainder is spent on completion
with finding and applying the relevant cases. In each “case”, completion applies
to the calculus extended with the equations gi = ci, where ci is one of the enu-
meration constants for the domain of a ground term gi. To make the procedure
more feasible, the part of refuteByCompletion applies certain heuristics for
selection of appropriate terms gi.
Lemma search This is a procedure of looking through the candidate formulae for
lemma, with a certain fast check for rejection, and with the attempt of inductive
proof (under a certain mean resource) for the candidates which have passed the
check. The prover adds the proved lemmata to the calculi of all appropriate
nodes in the current search state. This approach of LSI increases greatly the set
of practically provable statements.

3 Proof Search Example.

Let us define in OL the calculus list for ordering lists. The first line of the
below IL program builds the library calculus boolCalc, and the further lines
add declarations to extend it with the needed sorts, operators, and equations.
By all this, it imports the sort Bool together with the Boolean connectives and
their laws (equations). This forms the calculus list. It has the sort Elt for list
elements and sort List for lists over the domain Elt. The empty list operator
nil and the operator ":" : Elt List -> List for prepending an element are
the constructors for the list data. The declaration SortGen List [[nil, ":"]]
helps the prover to recognize that induction by these constructors for List is a
correct way to prove statements for the initial model of the calculus list with
respect to the domain List.

The operator ‘‘>’’ is for an order relation on Elt. The library function
addFormulae adds to the calculus the formula expressing a couple of usual ax-
ioms for the properties of ‘‘>’’. This predicate calculus formula is converted to
BT and takes part in completion during the proof search. The predicate eq_Elt
is for equality on the domain Elt. The predicate isOrdered is for expressing
that a list is ordered with by the relation ‘‘>’’.

The Rules part of this calculus actually contains the program to evalu-
ate the ground terms constructed via the above operators. This is evaluation
by rewriting, each rule applying “from left to right”. For example, the library
function call evaluate list (insert b (a: c: nil)) results in the term
a: b: c: nil.

3.1 A Digression: the Idea of Equational Reasoning for Programs

In order to reason about this program, the prover adds equations made from
these rules — see in the sequel the call of the library function
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rulesFromCalculusToEquations. The term ordering cp is set as a certain rpos
library function (currently, the default one), which details we skip here. The
library function ‘‘prove’’ does reasoning about the “program” of list in
terms of the above equations, by applying them, maybe in both directions, by
superposing them, and also comparing terms by cp to find which expression is
“simpler”. The equation set is considered rather as a calculus than a program
for evaluation. For example, concerning the above program insert, the prover
uses that the “input” term insert b (a: c: nil) equals to the “result” term
(a: b: c: nil) modulo the equations obtained in the calculus list, and also
that the latter term is conceptually “simpler” (by the TRW ordering cp) than
the former.

Of course, this approach is applied to all programs. Also this approach is for
reasoning about algebraic objects, in mathematics.

Concerning application to the program analysis, we stress that TRW and
equational reasoning methods (as completion) really use all the information con-
tained in a set of equations (the completeness property of the method).

3.2 Continuing with Example

The predicate isOrdered is defined in the rules via ‘‘>’’ and the auxiliary
operator isOrd. The operator insert for inserting an element to a list according
to the order ‘‘>’’, and its auxiliary operator ins, are bound in mutual recursion.

boolCalc = bool_default rpos

list = addFormulae preList

(forall [X,Y] (X eq_Elt Y xor X > Y xor Y > X))

where

preList =

(\calc -> addEquations calc $ rulesFromCalculusToEquations calc) $

addDeclarations_default boolCalc $

Calculus

{Sorts [Elt, List], SortGen List [[nil, ":"]],

Operators

{nil : List

_:_ : Elt List -> Bool (ParsePreceds 5 5),

_>_ : Elt Elt -> Bool ...,

eq_Elt: Elt Elt -> Bool (...Commutative), --equality predicate on Elt

insert : Elt List -> List ...,

ins : Elt Elt List Bool -> List ...,

isOrdered : List -> Bool ...,

isOrd : Bool Bool -> Bool ...,

a, b, c : Elt -- constants for constructing list examples

}

opPrecedDecls = [... [insert, ins, isOrdered, isOrd, :, nil, >,

eq_Elt, a, b, c, false]], ...

TermComparison = rpos

Variables = [X Y Z : Elt, Xs Ys Zs : List, bo : Bool],

Rules =



Term Rewriting for Program Verification 127

[X eq_Elt X -> true, -- laws for equality on Elt

a eq_Elt b -> false, a eq_Elt c -> false, b eq_Elt c -> false,

X > X -> false , -- laws for order on Elt

a > b -> false, a > c -> false,

b > a -> true, b > c -> false,

c > a -> true, c > b -> true,

isOrdered nil -> true,

isOrdered (X:nil) -> true,

isOrdered (X:Y:Ys) -> isOrd (X > Y) (isOrdered (Y:Ys)),

isOrd true bo -> false,

isOrd false bo -> bo,

insert X nil -> X : nil,

insert X (Y : Xs) -> ins X Y Xs (X > Y)

ins X Y Xs true -> Y : (insert X Xs),

ins X Y Xs false -> X : Y : Xs ]

The above declaration opPrecedDecls = ...insert, ins, >, ...
defines the operator precedence relation preced. By setting the precedence the
user gives the prover a notion of which “program” (operator) is simpler, and
gives a certain direction of reasoning. Together with the library function rpos,
it defines the term comparison related to this calculus. In particular, due to
this precedence, the prover will consider the term (insert a (b:Xs)) as more
complex than (ins a b Xs (a > b)), so that the former will be replaced with
the latter, and not the reverse.
Goal setting. Example
Prove that if a list Xs is ordered, then the list (insert X Xs) is ordered.
This is actually an important part for verification of the program ‘‘insert’’.
In our system, this means to prove the above statement in the initial model of
the calculus list. The user IL program ‘‘main’’ is short. It parses the goal
formula

forall [Xs, X] (isOrdered Xs ==> isOrdered (insert X Xs))

to fF :: Formula and builds the Goal expressing the problem of derivation

list |-InInitial- fF.

It makes the initial search state initState from this goal, and applies
prove rcPerStep initState (for this example, it is sufficient to set rcPerStep
= 2*10^6). It also prints out the result list of the proof search states.

Here we skip the definition of the function ‘‘main’’. Let us describe how
the prover forms the successive search states (trees).

First, the strategy applies all the following fitting search step kinds to the
initial state: pCp, nCp, arC, ind. For this example, we skip a particular search
step LSI, in order to demonstrate the main and regular part of the strategy. This
stage produces the search tree of four leaves. The kind of the tree root is Any,
because by the meaning of the prover standard search steps, the prover needs



128 Sergei D. Mechveliani

to prove at least one of these leaves. In the next pass-through, the prover tries,
in succession, to apply the corresponding proof methods in these leaves, trying
to prove the current leaf under the resource rcPerStep. For the evident reason,
this attempt fails for the leaves of pCp, nCp, arC, and the prover spends some
resource for this.

The leaf of ind Xs means induction by the value of Xs. Further, this leaf
branches to the base of induction (substitute Xs = nil) and inductive step. The
goal formula of the “step” has new variable z0. The node of induction has the
kind All, because by its meaning, both the base and “step” goals need to be
proved.

The prover continues this search in breadth by visiting the current set of
leaves, except the ones, which are skipped by various optimizations in the strat-
egy and also by the user marks (hints) ‘‘closed’’. After several steps, the
prover forms the state tree shown schematically below. In this picture, the mark
“-” near a node means that this node is not proved, so far, and “+” means that
it is proved.

-------------------- goal

/pCp /nCp /arC | ind Xs -

... ... ... &1/ \ &2

- - - pCp / \

+ -------------------

| ind z0 \ nCp- \ arC-

&1/ \ &2

+ nCp | | nCp +

The symbols &1 and &2 denote the branches of the induction base and step
respectively. The induction by Xs proves its base trivially. And the step formula
is

forall [Y]

( (forall [z0,X] (isOrdered z0 ==> isOrdered (insert X z0))) ==>

(forall [z0,X] (isOrdered (Y:z0) ==> isOrdered (insert X (Y:z0)))) )

In the further induction by z0, the “base” formula (substitute z0 := nil) is
reduced by the list calculus to

forall [Y,X] (isOrdered (ins X Y nil (X > Y))).

The attempt with nCp builds negation for this formula and produces the calculus

list U [isOrdered (ins A B nil (A > B)) = false],

with the indefinite Skolem constants A, B : Elt, aiming to derive a contra-
diction. It tries completion for this — under the resource rcPerStep/2. But this
occurs not sufficient.

Then, it extracts a useful information from the failed proof attempt. To do
this, it searches for appropriate ground subterms in this completion result which
domains are provided (in the calculus specification) with a finite enumeration.
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The calculus includes bool, and the latter specifies an enumeration for the sort
Bool. The “case” procedure finds a ground subterm A > B, which value cases
may simplify the search. The first case A > B = true is added to the calculus,
and the formula is reduced to isOrdered (B : (insert A nil)) = false, and
then, to isOrd (B > A) true = false. The BT part of the calculus contains
a representation of the law (X > Y & Y > X) = false. It superposes with the
“case” equation producing B > A = false. This derives the equation

isOrd false true = false,

and then, true = false, finishing the refutation for the case. The case of
A > B = false is refuted in a similar way.
Nested selection of subterms for “cases”
Further, there are applied several search steps, and among them — induction
by z0. Its “step” formula is

forall [y01,z01]

(forall [y0] ((forall [X] (isOrdered z01 ==> isOrdered insert X z01)) ==>

(forall [X] (isOrdered (y0:z01) ==> (isOrdered ins X y0 z01 (X > y0)))))

==>

forall [y0]

( (forall[X]...)==> (forall[X] ( isOrd (y0 > y01) (isOrdered (y01:z01))

==> (isOrdered ins X y0 (y01:z01) (X > y0)) ) ) ) )

This formula is negated and skolemized, several equations are added to the
calculus. Here refutation deals with the ground equations like

isOrdered (ins A y0 (y01:z01) (A > y0)) = false.

It considers the cases for the term A > y0. It fails to refute this set of two cases.
Then, it searches among the facts produced by completion for new ground terms
suitable to consider their cases. It finds a new subterm A > y01. Refutation by
completion considers the sub-cases for this term: the procedure makes recursion.
This continues until either the resource is out or the complete set of the cases is
refuted. In our example, it finishes with the report of kind

Proof by negation and completion for the goal ...There were considered

6 cases for appropriate ground subterms ... The branch is proved.

By this, the lower two leaves of the current tree (on the picture) become
proved, the whole tree simplifies according to the kind in each node, and the
tree is converted to the trivially true one.

So, this goal is proved by combining the above standard proof attempts. The
successful branch contains two induction edges, and also the final attempt nCp
of the proof by negation and completion together with considering “cases”.

The whole search process is similar to human reasoning, when a human
searches for the proof of the above statement for the program ‘‘insert’’.

4 Possible Development Directions

There are many ways in which the current prover should progress. Let us name
the three of them.
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1. Similarly as with human reasoning in solving problems, really efficient meth-
ods are feasible only for a specialized subject domain. For example, sorting
methods, finite groups, polynomials, and so on. This leads to specialized
knowledge bases, and needs an interface to a CA library.

2. Various improvements and extensions are needed for the existing strategy.
Many optimizations are possible for the BT processing and AC-Id comple-
tion.

3. It is useful to extend the object language with conditional rewriting, high-
order operators, functoriality.
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Abstract. Research in the field of creating systematical methods for
specialization of programs with respect to fixed properties of their ar-
guments, compositional structure and given invariants were started by
Russian scientists A. P. Ershov (“mixed computation”), V. F. Turchin
(“supercompilation”) and Japanese scientist Y. Futamura (“generalized
partial computation”) in the 1970-ths. To the current moment a huge
amount of facts mainly related to the object domain of functional pro-
gramming languages was accumulated in the literature.
Ideas of supercompilation were mainly being studied on the base of a
functional programming language REFAL, although a series of the re-
sults were polished on the LISP’s experimental base. At present time,
along with a number of primitive supercompilers constructed for simplest
purely theoretical languages, there exists the only experimental super-
compiler SCP4 for a real programming language (REFAL-5). The name
SCP4 was suggested by V. F. Turchin as reflecting the history of the
supercompilation ideas.
In this paper we consider various approaches to formulation of the spe-
cialization task per se. We give a short survey of the main achievements
derived (to the given moment) in the field of specialization of functional
programs, analyze principal distinctions between supercompilation and
other existing methods. We survey the attempts of constructing of su-
percompilers.

Keywords: Program transformation, program specialization, supercom-
pilation, partial evaluation, REFAL.

1 Preliminaries

Definition 1. An implementation of a functional programming language < is a
quadruple 〈P,D,U,T〉, where sets P, D are called as a <-program set and a <-data
set correspondingly; partial recursive functions U: P×D 7→ D and T : P× D 7→ N
are named correspondingly as a universal function (or semantics) and a time
? The author is supported by Russian Foundation for Basic Research (grants 07-07-

92100-GFEN a, 08-07-00280-a), Program for Basic Research of Presidium of Russian
Academy of Sciences (as a part of “Development of the basis of scientific distributed
informational-computing environment on the base of GRID technologies”) and Rus-
sian Federal Agency of Science and Innovation project No. 2007-4-1.4-18-02-064.
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measure function of the < language. Here N stands for the set of the natural
numbers.

Below we use the shorthand notation p(x) for U(p,x).

2 On Two Task Statements of Program Specialization

Two different statements of the specialization task per se are considered in the
scientific literature. We will formulate them in natural precision terms. The dif-
ference between the concepts of a total recursive function and a partial recursive
function is essential in the following statements of the tasks.

Let an implementation of a functional programming language < = 〈P,D,U,T〉
be given, where D =

⋃
n∈N Mn for a nonempty set M .

The task 1. Let a program p(x,y) from P define a partial recursive function
F (x, y) : D × D 7→ D. Given a value of the first argument x0 ∈ D of the function
F , the specialization task requires to construct another program q(y) ∈ P such
that

∀y ∈ D.(q(y) = p(x0, y)) ∧ (T(q,y) ≤ T(p,x0, y)),

where the value q(y) determined if and only if the value p(x0,y) determined.
Otherwise their non-determination types (abnormal stop or infinite evaluation
time) must coincide. That is to say, in this task the programs q(y) and p(x0,y)
define the same parial recursive function, namely F (x0, y).

The task 2. Let a program p(x,y) from P define a total recursive function
F (x, y) : X × Y 7→ D, where X ⊂ D, Y ⊂ D. Given a value of the first argument
x0 ∈ D of the function F , the specialization task requires to construct another
program q(y) ∈ P such that

∀y ∈ Y.(q(y) = p(x0, y)) ∧ (T(q,y) ≤ T(p,x0, y)).

In the other words, in the second task the program q defines an extension of the
total recursive function F (x0, y) : Y 7→ D onto the second argument.

The program q(y) is said to be a residual program.

The substantial part of the tasks is to construct an optimal q
(with respect to the running time).

Various specifications of the concept of optimality (the time measure function
T) define concrete approximations of the specialization task per se. Roughly
speaking, the first task demands that the residual program q has to preserve
the operational semantics of the source program p. The second task is more
natural from the point of view of applications: usually, operational behavior of
the residual program does not matter for users, if the input data do not belong
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to the users’ subject domain. On the other hand, the conditions of the second
task provide more freedom for concrete specialization methods. That frequently
allows construct more optimal residual programs as compared with the methods
restricted with the constraints imposed by the first task.

Supercompilation methods are oriented to solve the second task.

3 A Survey of the Results in the Field of Program
Specialization

Great difficulties arose on the way of development and implementation of the
basic ideas formulated by A. P. Ershov, V. F. Turchin and Y. Futamura. Later
N. D. Jones (Denmark) suggested to weaken the originally set goals at the ex-
pense of the specialization methods [16,14]. This simplified technique known as
partial evaluation is the most developed one to the given moment. It solves the
first specialization task. Trying to solve the tasks of self-application of a special-
izer, also independently formulated by the three above mentioned researchers in
the 70-ths, N. D. Jones together with his colleagues made still another principal
step towards simplification of the specialization methods. In the 1985-th N. D.
Jones, P. Sestoft and H. Søndergaard (University of Copenhagen) succeed in
solving an approximation task of self-application of a Copenhagen partial eval-
uator mix [15]. Here we have to note that there exists always a time measure
function T allowing to construct the following residual program:

q(y) { = p(x0,y); }

i.e. simply copying the source program p and fixing the given value of the first
argument in the entry point of the p. The first results of self-application of mix,
substantially, just slightly differed from the trivial residual program given above.
In the 1995-th [11] N. D. Jones wrote that the length of the residual program
obtained as a result of a simplest task of self-application

mix(mix(p0,x,y))1

of mix with respect to a given three-line program p0(x,y) was five hundred
pages. Here values of y are unknown to both copies of mix; the value of the x
argument is known to the mix being specialized, while it is unknown to the mix
specializing the program p0. Analyzing the residual program the Copenhagen
group suggested the concepts of “online” and “offline” specialization methods
[14]. Below we consider these concepts. The choice of the simpler “offline” meth-
ods allowed in the 1986-th to solve more reasonable tasks of self-application of the
partial evaluator mix [14,35]. By means of introduction of tools rising the arities
of the programs being specialized (as well as their subprograms) in the frames
of the “offline” approach, in the 1987-th [31,33,34], S. A. Romanenko succeeded
in substantial improvement of the structural and running time properties of the

1 Here the underline denotes an encoding.
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residual programs resulted in several tasks of self-application of the Moscow par-
tial evaluator unmix. The following name of his paper describing unmix is self
explanatory: “A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure” [31,33].

Offline specialization parts analyzing the source program p and metainterpre-
tation of the local p’s steps (evaluation of which can be done without knowledge
of the concrete values of the unknown part of the steps’ arguments) in separate
processing stages. The input for the first stage named as biding time analysis
(BTA) is the p and information indicating the part of the p’s arguments, which
will be known to the second stage of transformation (metainterpretation) rather
than concrete values of the arguments, and the other part of the arguments,
which will be unknown to the second stage. The first kind of the arguments is
named as static, while the second kind is named as dynamic. The BTA’s output
is an annotated program pann, in which each elementary action is annotated as
static whenever it can be unambiguously interpreted without knowledge of the
concrete values of the dynamic part of the input of these actions-steps. The ar-
guments of every such a step are annotated as static or dynamic as well. The
BTA analyses the static information flow (“movement”) along the program p.
Obviously, the task (per se) formulated for the BTA is algorithmically unde-
cidable. Everywhere here, by default, we mean some approximation of the task
formulated for the BTA. The input for the second stage (which, in fact, is named
just as “specialization” in such an approach) is the pann together with the values
of its static arguments. “Specialization” (the second stage) is logically simple and
decidable; all substantial problems were moved to the BTA. The Jones’ group,
as well as S. A. Romanenko, solved the following task

mix(mixann(pann0 ,x,y))2

rather than the original classical self-application task. The solved task is sub-
stantially simpler as compared with the classical one: both copies of mix perform
only the second stage of transformation and do nothing concerning the biding
time analysis. Later the Jones-Romanenko’s offline self-application experiments
were reproduced and made more accurate by a number of authors. Here is sub-
stantially that the input data (both static and dynamic, represented by the
parameters) for every p’s step are being scanned the only time (by the single
processing) during the “specialization” (the second) stage.

Online specialization performs metacompucation of the steps of the program
p being transformed “on the fly” of analyzing various properties of the program;
generally speaking, in no way a priori restricting itself both in any means and in
the number of processing along the program p (or along segments (parts) of the
program; for example, – along the input data of each program’s step). Each such

2 Here, in the task solved by S.A. Romanenko both mix must be replaced with unmix.
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a processing gives a loop, which, in general case, can not be automatically recog-
nized even if it works without any consequences, not doing transformations, but
only looking for a property such that the program p does not satisfy the prop-
erty. Hence, in general case, this loop will be presented in the residual program
and will increasing the time complexity of the residual program. In any attempt
of such self-application the data processings trying to separate (recognize) the
static data from the dynamic ones will be observed by the transforming copy
of the specializer. That essentially complicates its logic (as compared with the
offline approach). Algorithmically undecidable and decidable parts of the logic
are not separated at all.

Resume: development of the methods of online specialization is much more
complicated as compared with the methods of offline specialization.

By definition, online specialization is lesser restricted in the methods being
used than offline specialization and, as a consequence, is potentially considerably
stronger. The most important point here is as follows: offline specialization is
able to transform only the source program p, while online specialization is able to
transform (and it really performs such transformations in the case of supercom-
pilation) also subprograms constructed by a specializer itself (and, hence, simple
inefficient structures may be presented in such subprograms), but not only the
p’s subprograms written by an human.

Supercompilation and “generalized partial computation” as collections of the
online specialization methods provide much more stronger mechanisms for au-
tomatic program analyzing and transformation as compared with the partial
evaluation technology. As a consequence, they set much more difficult prob-
lems: pure cognitive, algorithmic and technological (implementation of concrete
specializers). The methods of supercompilation and generalized partial compu-
tation, unlike the partial evaluation methods, sometimes allows decrease the
time complexity order of the programs being specialized. The residual programs
are entirely constructed on the base of metainterpretation of the program being
specialized, rather than on stepwise cleaning of the program. The section 4 is
devoted to a survey of the supercompilation ideas.

Apparently, at the current moment, the ideas of generalized partial com-
putation must be considered as the least developed. Unlike partial evaluation
and supercompilation, the generalized partial computation approach to program
specialization is not closed under itself. For example, an experimental semiau-
tomatic specializer WSDFU announced in the 2002-nd [6] turns to an external
theorem prover TPU [2] and to an external knowledge base for proving some
properties of the programs being specialized. We have to note very interesting
examples of specialization of programs with numerical arguments, generalized
partial computation of which results in decreasing the time complexity of the
programs [4,6]. Both the partial evaluation and supercompilation methods can
do almost nothing with numerical data; here the main attention is attended to
the programs transforming the binary trees (partial evaluation) and the finite
sequences of arbitrary trees (supercompilation).
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The partial evaluation methods as the simplest ones have been developed
most thoroughly. Here the main contribution was made by N. D. Jones and his
students. As we already mentioned above, the substantial part of the methods
is the BTA-analysis approximating the algorithmically undecidable part of the
specialization task per se. The task to be solved by the BTA is to most accu-
rately recognize the control operators of the program being specialized, which
can be evaluated without any information of the dynamic part of their input
data, and at the same time the BTA has to terminate most frequently3. The
most success in development of the BTA was achieved by means of analysis of
a size change of a program being specialized (C. S. Lee, N. D. Jones, A. M.
Ben-Amram [22]). The algorithms generalizing of parameterized configurations
in supercompilation and generalized partial computation are analogues of the
BTA; any preliminary annotation of the source program p, which is able to help
in improving the generalization algorithms, can be very useful in the technolo-
gies. As far as we know there exist no attempts of using the BTA’s methods in
the supercompilation context. On the other hand, separation of the BTA and
properly specialization, as well as the orientation on stepwise cleaning of the
source program p, lead to direct (often undesirable) inheritance of the p’s prop-
erties by the residual program (see, for example, the Mogensen’s paper [24]).
Such an inheritance was the subject to be bypassed by S. A. Romanenko, when
he was developing the arity rising algorithm (see above). The original restriction
imposed on partial evaluation to construct the residual programs satisfying the
properties formulated in the Task 1 (see above) puts irresistible difficulties on
the way of very desirable optimizations. For example, the type specialization
problem posed by N. D. Jones in [11] can be decided only in the frame of the
Task 2. That was pointed by J. Hughes in the paper [10] describing some type
specialization methods.

Speaking on partial evaluation the author have to mention the excellent N. D.
Jones’ book “Computability and Complexity from a Programming Perspective”
(1997, [13]), in which N. D. Jones, with a purely theoretical viewpoint, tried to
understand and generalize the experience accumulated in the partial evaluation
filed.

4 An Historical Survey of Development of the
Supercompilation Methods

In 1970-th years V. F. Turchin proposed a number of ideas on automatic program
transformation. He called the idea as “supercompilation”4.

3 The requirement obligating a specializer to terminate on any its input data, usually,
immediately confines the time measure function T to a simplest one; any interesting
transformations cannot be expected.

4 In our point of view the chosen name is poor. Supercompilation is not a kind of
compilation; likewise a multivalued function is not a function and a vector field is
not a field.
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He posed a task to create tools for supervision over the operational semantics
of a program, when the function F being calculated by the program is fixed. Such
supervision must result in a new algorithmic definition of an extension of the
function F . The new algorithm is constructed with the aim of quicker calculation
of the F on fixed arguments (as compared with the original program).

Supercompilation was considered by V. F. Turchin with a point of view an
application of his “metasystem transition philosophy”. In the given paper we are
not interested in the Turchin’s philosophical constructions.

Below we name main stages of the history of development of the supercom-
pilation ideas according to a Turchin’s terminology given in the papers [43,44].
The supercompiler SCP4 was named by V. F. Turchin as well.

The first Turchin’s publication “Ekvivalentnye preobrazovaniya rekursivnykh
funktcij, opredelennykh na yazyke REFAL” (in Russian, “Equivalent transfor-
mations of recursive functions defined in REFAL”) is dated with the 1972-nd
[38]. The language REFAL was originally projected by V. F. Turchin as a met-
alanguage aiming to transform programs (in particularly, the programs written
in the programming language REFAL). In this paper V. F. Turchin describes a
fragment of REFAL called as strict REFAL, in which the time taken by matching
of input data of a function with a pattern is uniformly bounded on size of the
input data. To define the language fragment, a restriction was imposed on syntax
of the patterns. The corresponding strict patterns were called as L-expressions.
All models of the supercompilers5 developed early than the supercompiler SCP4
used subject programming languages including only the strict patterns (or sub-
sets of the strict pattern set). V. F. Turchin introduces (absolutely natural for
any metacomputation) a concept of driving of the L-expressions, although he
does not name the concept. He formulates an equivalent transformation calculus
for the strict REFAL programs. The ideas of the calculus laid the basis for the
supercompilation methods.

The Courant Computer Science report #20 stating many ideas on program
transformation became the second important Turchin’s work (1980, [40]), where
many of the ideas are given very vaguely and, frequently, unconvincing. The
work bristles with examples of non-algorithmic transformations and problem
statements, most of which are not solved up to now. The examples substantially
use the associative property of the REFAL’s concatenation constructor. The
report does put questions but does not answer the questions.

SCP1. The first simplest model of a supercompiler was implemented by V. F.
Turchin, B. Nirenberg and D. V. Turchin in New York, in the 1981-st [48]. The
supercompiler SCP1 was written in a REFAL’s dialect. It worked in a dialog
mode asking a human how to generalize the encountered configurations. Thus
the main problem of approximation of the algorithmically undecidable part of
the supercompilation logic was taken out of the consideration at all. The SCP1
represented an important step in polishing the driving algorithm, which per-
formed metacomputation of calls by need (during the supercompilation stage).
5 Including the supercompilers for LISP’s toy-dialects.
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The authors of the SCP1 succeeded in specialization of a number of simple exam-
ples. One of the examples became classical: a two-processing program replacing
the symbol ’a’ with ’b’ in a given string and, after that, – the symbol ’b’
with ’c’ was specialized to an one-processing program (with respect to the call
context of the two processings, which was directly represented by the syntactic
composition f(g(x))). Thus the SCP1 was aimed to solve the second specializa-
tion task (see Section 2). Later such semantics was named as “lazy” semantics.
In the 1990-th P. Wadler called a program transformation algorithm based on
such driving as “deforestation” [50] and described an algorithmically incomplete
language allowing only finitely many of parameterized configurations for a given
program in iterative repetition of the lazy driving’s steps.

SCP2 was developed by V. F. Turchin in the 1984-th. The Turchin’s paper “The
concept of a supercompiler” published in the 1986-th [42] and describing some
ideas of the SCP2 implementation became the main classical work on supercom-
pilation. The logical negation connective was introduced in the SCP2’s language
describing parameterized configurations. That allowed solve the following clas-
sical program transformation task by the supercompilation methods. An naive
algorithm p(s,x) searching a substring s in a string x was transformed in an
algorithm known as KMP [18]: by means of specialization of the source program
with respect to the first argument p(s0,x). It was shown that the supercompiler
can be used for automatic proofs of simple existence theorems. The generaliza-
tion algorithm implemented in the SCP2 works ad hoc and, as a consequence,
a human help is needed for the algorithm, if one wants to obtain more or less
interesting transformations.

In the 1980-ths, at a Moscow REFAL workshop, A. Vedenov annotated a
speedy completion (by himself) of a release of a REFAL supercompiler. Any
publications or reports on such an actual implementation were not followed.

Two preprints written by Turchin’s students were published by M. V. Keldysh
Institute of Applied Mathematics of the Russian Academy of Sciences in the
1987-th. The works considered several supercompilation problems were “REFAL-
4 – rasshirenie REFALa-2, obespechvajuschee vyrazimost’ progonki” (S. A. Ro-
manenko, in Russian, “REFAL-4 is an extension of REFAL-2, which supports
expressibility of the driving”, [32]) and “Metavychislitel’ dlya yazyka REFAL,
osnovnye ponyatiya i primery” (And. V. Klimov and S. A. Romanenko, in Rus-
sian, “A metaevaluator for the language REFAL, basic concepts and examples”,
[17]).

The work “The algorithm of generalization in the supercompiler” (1988, [41])
became the second impotent Turchin’s paper. The paper describes an algorithm
of generalization of function call’s stacks and proves termination of the algorithm.
The algorithm was called as the Obninsk algorithm cutting the stack; after
a Russian city where Turchin presented the algorithm for the first time. The
Obninsk algorithm is one of most important supercompilation algorithms. The
supercompiler SCP2 was improved by the algorithm (see [46]).
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The first actual attempt of self-application of a supercompiler was done in the
1989-th. A set of parameterized configurations of a program p being specialized
is said to be a basic configurations’ set if the p can be described in terms of the
parameterized configurations. Finite sets of the basics configurations for a num-
ber of concrete simple tasks of self-application were manually constructed as a
result of studying the trace of looping SCP2 self-application. These basic config-
urations’ sets guaranteed termination of the supercompiler SCP2 running on the
given tasks and not using any generalization algorithm. The generalization algo-
rithm was withdrawn from the SCP2 with the goal to achieve self-application.
The basic configurations’ sets corresponding to the chosen simple self-application
tasks were given as inputs to the SCP2. As a consequence, the SCP2 succeed in
the self-application tasks. A paper describing these experiments saw light in the
1990-th [8]. Thus, the algorithmic decidable part (i.e. without the approximating
generalization algorithm) of the simple specialization tasks per se was solved.

In the 1990-th N. V. Kondratiev [19], who is a Turchin’s student, made an
attempt of implementation of a supercompiler for REFAL. The attempt remains
unfinished. A REFAL-graph language was used as an internal language for trans-
formations. The REFAL-graph language is used in the supercompiler SCP4 (see
below).

In the 1992-nd S. M. Abramov and R. F. Gurin (other Turchin’s students)
made a similar unfinished attempt for a simple model programming language
working with the LISP data. The main hindrance, which they were not able to
overcome, was development of an algorithm constructing output formats of the
intermediate functions being constructed during supercompilation.

In the 1992-nd And. V. Klimov and R. Glück published a paper “Occam’s
razor in metacomputation: the notion of a perfect process tree” [7], where the
driving algorithm described in the LISP terms (by means of binary trees). The
main goal of the work was familiarization of western researchers with several sim-
ple ideas of supercompilation. The authors demonstrate the ideas on the simpler
data as compared with the REFAL data. (For various reasons, importance of
the associative property of the REFAL concatenation is not appreciated out of
Russia until now.) The paper refined several concepts of the driving algorithm.
A supercompiler for a simplest model LISP-like language was represented as
well. This simple supercompiler also a priory assumes termination of the su-
percompilation process and does not use the principal generalization algorithm
approximating the algorithmic undecidability of the specialization task per se.

SCP3. The experience of manual constructing the basic configuration’s set in
the experiments on self-application of the SCP2 made it clear that on the way
of completely automatic self-application of supercompilers we are facing with
many difficult problems. In the 1993-rd, V. F. Turchin decided to restrict the
subject language of his supercompiler to a “flat” algorithmic complete frag-
ment of REFAL-5. The fragment forbids the explicit syntactical constructions of
the function call’s compositions. The main goal in developing such a supercom-
piler transforming “flat” programs was achievement of its completely automatic
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self-application. Here the SCP3 itself was developed in the terms of the whole
REFAL. It was supposed that before self-application the SCP3’s sources have
to be translated in the flat REFAL. A crucial step in development of the su-
percompiler SCP3 was an extension of the parameter language describing the
configurations of the program being transformed: adding new types of the pa-
rameters. The additional typing allows be more accurate in description of the
self-application tasks (see details in [47,28]). In the 1994-th, it became possible
to achieve completely automatic SCP3 self-application on a number of simple
self-application tasks. Thus the long standing open question on the principal
possibility of self-application of a specializer constructed on the base of the su-
percompilation methods was positively closed. In the 1996-th, V. F. Turchin,
A. P. Nemytykh and V. A. Pinchuk published a paper (“A Self-Applicable Su-
percompiler”, [29]) stating the basic ideas allowing to make these successful
experiments and describing the experiments themselves. The algorithm general-
izing the flat configurations still did not have a firm theoretical basis, although
it did work completely automatically.

In the 1995-th, M. H. Sørensen (Denmark) [36] suggested to use an Higman-
Kruskal relation [9,21] to make an important approximating decision by the gen-
eralization algorithm: “Given two configurations, have we to generalize them?
Have not?”. This suggestion put the algorithm generalizing the “positive” part of
the configurations (that is to say, a part described without the negation connec-
tivity) on a firm theoretical base. In the 1996-th, M. H. Sørensen, R. Glück and
N. D. Jones published a paper [37] describing a model supercompiler for a sim-
plest subset of the language LISP. In the supercompiler the language describing
the parameterized configurations does not use the negation connective.

In the 1995-th, S. M. Abramov published a book “Metavychisleniya i ikh
primenenie” (in Russian, “Metacomputation and their applications”, [1]), in
which the author describes an algorithm generalizing a negative part of the
configurations. The negative part is given only in the unit-size terms (in the
terms of “symbols/atoms”).

SCP4. A long-continued research (under supervision by V. F. Turchin) of the
author (of this paper) resulted in development and implementation of an ex-
perimental supercompiler SCP4 (1999-2003) for a real programming language
REFAL-5. In other words, without any restriction imposed on the language.
Landmark program transformation algorithms were developed and implemented
during this work. The very key algorithm from the series of the global analysis
algorithms is an online algorithm constructing an output format of a function
F . I.e. the output format is being constructed on the fly of the supercompilation
process. That allows immediately use the constructed format for specialization
(with respect the format) both other functions calling the F and the function
F itself. The SCP4 is the first experimental free distributed supercompiler. An
internet online version of the supercompiler is available as well. In the 2007-th,
the author published a book “Superkompilyator SCP4: obschaya struktura” (in
Russian, “The supercompiler SCP4: general structure”) [28].
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The supercompilation task is in essence a difficult task and, in its nature, an
approximating task. Practically almost any interesting optimization problem is
undecidable. The problem is, on one hand, in step-by-step movement to exten-
sion of the existing methods and algorithms and development of new ones; on
the other hand, in compact description of the algorithms, which allows control
the source code of the supercompiler itself. The existing collection of the basic
methods used by the supercompiler SCP4 allows obtain enough interesting trans-
formations thanks to diversity of composition of the methods. It is appropriate
comparison here the situation with the classical Turing Machine, which possess-
ing a collection of its trivial basic actions, nevertheless, allows define arbitrary
algorithm by means of diversity of the elementary actions.

5 Supercompilation vs. Partial Evaluation

The Turing Machine (TM) gives another cause for returning to comparison su-
percompilation with partial evaluation.

What is the essence of the Jones’ idea simplifying the online program trans-
formation ideas and leading to partial evaluation? The answer is as follows. Given
a finite collection of elementary program transformations {q1, q2, . . . , qn} (i.e. a
calculus) a supercompiler has to manipulate by the trivial transformations like
a juggler with the goal of optimization of a given input program. One part of
these trivial transformations (let it be {q1, q2, . . . , qm}) are responsible for gen-
eralization of the program configurations, while another part is directly used for
metainterpretation (for specialization itself). As mentioned above (see Section 3)
the BTA algorithm is an analogue of the generalization algorithm. The essence
of the Jones’s idea is to manipulate by the transformations {q1, q2, . . . , qm} by
means of the BTA only; and the result of such manipulation must be given as
an input to the second transformation stage manipulating only the second part
of the elementary transformations. Such a partition immediately leads to disas-
trous effects. To feel deeply what the effects are let us once again consider the
TM example. Let us apply the Jones’ idea to the basic TM’s operators6

{t1, . . . , moveto left, moveto right, . . . , tk}

and part this collection in two ones:

{t1, . . . , moveto left} and {moveto right, . . . , tk}.

Now according to partial evaluation we have to separately manipulate by the
operators {t1, . . . , moveto left} and just after that we are allowed to use the
second part of the operators. Manipulation of the whole collection of the TM’s
operators provides possibility for generating any algorithm. But what can be
programmed if we will follow the Jones’ idea? The answer is trivial!

6 Here moveto left and moveto right stand for the operators moving the TM’s head.
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Abstract. This tutorial shows how to rewrite an interpreter written in
a higher-order functional language, so that it will become more similar
to a compiler, thereby eliminating the overhead due to interpretation.

1 Defining a language by means of an interpreter

When writing programs in a functional language, it is fairly easy to “extend”
the language by defining an interpreter run, which will take a program prog,
and some input data d, and return the result of applying prog to d:

run prog d

Hence, in this way the programmer can include in his program pieces written
in the language implemented by run. run is usually said to give an operational
semantics for the language thus defined.

Unfortunately, an interpreter written in a straightforward way is likely to
introduce a considerable overhead.

However, the overhead can be reduced by refactoring a näıve interpreter in
such a way that it becomes more similar to a compiler. The refactoring is based
on replacing some first-order functions with higher-order ones.

2 An example interpreter

For the user to feel comfortable, run should accept programs written in human-
oriented form, which can be achieved with the aid of quotation/antiquotation
mechanism as usually implemented by Standard ML implementations. The tech-
niques of translating programs from the “concrete” syntax into the abstract syn-
tax are well known, and will not be considered in this paper. Hence, for the sake
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a and

No. 08-07-00280-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.
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datatype exp =

INT of int

| VAR of string

| BIN of string * exp * exp

| IF of exp * exp * exp

| CALL of string * exp list

type prog =

(string * (string list * exp)) list;

Fig. 1. Abstract syntax of programs.

val fact_prog =

[

("fact", (["x"],

IF(

BIN("=", VAR "x", INT 0),

INT 1,

BIN("*",

VAR "x",

CALL("fact",

[BIN("-", VAR "x", INT 1)])))

))

];

Fig. 2. A program in abstract syntax.

of simplicity, run is supposed to accept programs represented by abstract syntax
trees.

As an example, we shall consider a function run having type

val run : prog -> int list -> int

A program will be a list of mutually recursive first-order function definitions,
each function accepting a fixed number of integer arguments, and returning an
integer. The abstract syntax of programs is shown in Figure 1.

For example, the well-known factorial function

fun fact x =
if x = 0 then 1 else x * fact (x-1)

when written in abstract syntax, takes the form shown in Figure 2. Combining
the interpreter run and the program fact_prog, we can define the function fact
computing factorials of integers:



Higher-Order Functions as a Substitute for Partial Evaluation (A Tutorial) 147

fun eval prog ns exp vs =

case exp of

INT i => i

| VAR n =>

getVal (findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval prog ns e1 vs,

eval prog ns e2 vs)

| IF(e0, e1, e2) =>

if eval prog ns e0 vs <> 0

then eval prog ns e1 vs

else eval prog ns e2 vs

| CALL(fname, es) =>

let

val (ns0, body0) =

lookup prog fname

val vs0 =

evalArgs prog ns es vs

in eval prog ns0 body0 vs0 end

and evalArgs prog ns es vs =

map (fn e => eval prog ns e vs) es

fun run (prog : prog) vals =

let val (_, (ns0, body0)) = hd prog

in eval prog ns0 body0 vals end

Fig. 3. First-order interpreter.

fun fact x = run fact_prog [x];
fact 4;

The interpreter run can be defined in a straightforward way (see Figure 3).
Some auxiliary declarations used in this interpreter (and further examples) can
be found in Figures 4 and 5.

3 Denotational definition

If the program being executed contains a loop, the interpreter may analyze the
same fragments of the source program again and again, which slows down the
execution. Let us try to eliminate this overhead by rewriting our interpreter in
denotational style.
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fun findPos ns n =

let fun loop [] i = raise Fail "findPos"

| loop (n0::ns) i =

if n = n0 then i

else loop ns (i+1)

in loop ns 0 end

fun getVal 0 vs = hd vs

| getVal n vs = getVal (n-1) (tl vs)

fun lookup [] n = raise Fail "lookup"

| lookup ((k,v) :: rest) n =

if k=n then v else lookup rest n

Fig. 4. Look-up functions.

fun evalB "+" = op +

| evalB "-" = op -

| evalB "*" = op *

| evalB "=" =

(fn(x, y) => if x = y then 1 else 0)

| evalB _ : int * int -> int =

(raise Fail "evalB")

Fig. 5. Meaning of primitive operators.

3.1 What is a denotational definition?

A denotational definition is essentially a compiler that maps the source pro-
gram prog into its “meaning” [[prog]], a function that, given the input data, will
produce the result of running prog with that input.

There is an additional requirement any denotational definition must satisfy:
namely, the meaning of each program fragment must be formulated in terms of
the meanings of its constituent parts. The interpreter in Figure 3 violates this
requirement, because the function eval takes as arguments both an expression
and the whole program. Hence the meaning of an expression is defined via the
meaning of the whole program.

This subtle point can be illustrated by contrasting two definitions of the
Pascal construct while exp do st .

The semantics of statements can be given via a function evalS, which takes
as arguments a statement st and a store s, and returns a new store evalS st s .

Figure 6 shows a version of evalS that is not denotational, because evalS
recursively calls itself passing as argument the same fragment of the source
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fun evalS (WHILE(exp, st)) s =

if evalE exp s then

evalS(WHILE(exp, st))

(evalS st s)

else s

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 6. An operational definition of the while loop.

fun evalS (WHILE(exp, st)) s =

let fun loop s =

if evalE exp s then

loop(evalS st s)

else s

in loop s end

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 7. A denotational definition of the while loop.

program: the whole construct while. This definition, however, can be “rectified”
by introducing an auxiliary function loop (see Figure 7). Now the meaning of
WHILE(exp,st) is expressed in terms of the meanings of exp and st !

3.2 Turning the interpreter into a denotational definition

We may turn our interpreter into a denotational definition by replacing the
parameter containing the text of the program with a function environment φ,
mapping function names onto their meanings (see Figure 8). Hence, the meaning
of an expression depends only upon the meanings of its constituent subexpres-
sions (and is defined with respect to some function environment).

The only problem is how to find the function environment φ corresponding
to the whole program. If the denotational definition is written in a lazy program-
ming language, φ can be given a circular definition

val rec phi = ... phi ...

in which case phi will be found as the “least fixed point” of the above equation.
But, if the denotational definition is to be written in a strict language (like
SML), the right hand side of a recursive equation must be a λ-abstraction. This
restriction will be satisfied, if we rewrite the equation as
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fun eval phi ns exp vs =

case exp of

INT i => i

| VAR n => getVal(findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval phi ns e1 vs,

eval phi ns e2 vs)

| IF(e0, e1, e2) =>

if eval phi ns e0 vs <> 0

then eval phi ns e1 vs

else eval phi ns e2 vs

| CALL(fname, es) =>

phi fname (evalArgs phi ns es vs)

and evalArgs phi ns es vs =

map (fn e => eval phi ns e vs) es

fun run (prog : prog) =

let

fun phi fname =

let val (ns, e) = lookup prog fname

in eval phi ns e end

val (_, (ns0, e0)) = hd prog

in eval phi ns0 e0 end

Fig. 8. Denotational definition.

fun phi fname = ... phi ...

See the declaration of run in Figure 8 for technical details.

3.3 Representing loops by cyclic data structures

The drawback of the denotational definition in Figure 8 is that, instead of rep-
resenting the loops appearing in the source program by a cyclic data structure,
we, first, replace it with a non-cyclic—but infinite—tree, and then unroll that
tree incrementally.

However, we can represent the function environment as a finite graph by
making use of some “imperative features” of Standard ML (see Figure 9).

The constructor ref creates “memory locations”. When applied to a value v,
it creates a new location, v being the initial contents of the location, and returns
a reference to the location. The function ! , when applied to a reference, returns
a copy of the contents of the corresponding location. The assignment E1:=E2

evaluates E1, which must return a reference to a location, and E2. Then the
contents of the location is replaced with the value returned by E2.
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fun eval phi ns exp vs =

case exp of

INT i => i

| VAR n => getVal (findPos ns n) vs

| BIN(name, e1, e2) =>

(evalB name) (eval phi ns e1 vs,

eval phi ns e2 vs)

| IF(e0, e1, e2) =>

if eval phi ns e0 vs <> 0

then eval phi ns e1 vs

else eval phi ns e2 vs

| CALL(fname, es) =>

let val r = lookup phi fname

in (!r) (evalArgs phi ns es vs) end

and evalArgs phi ns es vs =

map (fn e => eval phi ns e vs) es

fun dummyEval (vs : int list) : int =

raise Fail "dummyEval"

fun app f [] = ()

| app f (x :: xs) =

(f x : unit; app f xs)

fun run (prog : prog) =

let

val phi =

map (fn (n,_) => (n, ref dummyEval))

prog

val (_, r0) = hd phi

in

app (fn (n, (ns, e)) =>

(lookup phi n) := eval phi ns e)

prog;

!r0

end

Fig. 9. Using references to represent cycles in the call graph.

The function run builds the environment phi by creating a separate location
for each function definition and associating the function’s name with the location.
Then the location is assigned the meaning of the function definition.
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4 Separating binding times

4.1 Being denotational is not enough

Theoretically, the denotational definition in Figure 9 transforms a function into
its meaning. But, if we examine it more closely, we can easily find out that it
can hardly be called a “compiler”: the function eval does not compute anything,
before it has been given parameter vs, the values of variables.

One of the consequences is that, if the source program contains loops, the
same subexpressions may be analyzed and “compiled” again and again.

We may however improve the definition, by applying a few techniques devel-
oped in the framework of lazy programming languages.

4.2 Binding times

When an expression like

(fn x => fn y => fn z => e)

is applied, x is bound before y, which again is bound before z. According to
[Hol90], we call the variables that are bound first early and the ones that are
bound later late. The early variables will be said to be more static than the late
ones, whereas the late variables will be said to be more dynamic than the earlier
ones.

4.3 Lifting static subexpressions

Consider the declarations

val h = fn x => fn y => sin x * cos y
val h’ = h 0.1
val v = h’ 1.0 + h’ 2.0

When h’ is declared, no real evaluation takes place, because the value of y is
not known yet. Hence, sin 0.1 will be evaluated twice, when evaluating the
declaration of v. This can be avoided if we rewrite the declaration of h in the
following way:

val h = fn x =>
let val sin_x = sin x
in fn y => sin_x * cos y end

The transformation of that kind (see [Hol90]), when applied to a program in a
lazy language is known as transforming the program to a “fully lazy form”1.

Now by lifting static subexpressions in the denotational definition of the
while loop (shown in Figure 7), we can obtain an improved definition shown in
Figure 10.
1 Needless to say that in the case of a strict language such transformation may be

unsafe, because it may change termination properties of the program. For example,
if we replace sin x with monster x, where monster is an ill-behaved function, the
evaluation of monster 0.1 may never terminate!
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fun evalS (WHILE(exp, st)) s =

let

val c1 = evalE exp

val c2 = evalS st

fun loop s =

if c1 s then loop(c2 s)

else s

in loop s end

| evalS (ASSIGN(id, exp)) s = ...

...

Fig. 10. The result of lifting static subexpressions in the definition of the while
loop.

4.4 Liberating control

Consider the expression

fn x => fn y =>
if (p x) then (f x y) else (g x y)

If we apply the transformation described above, we can avoid reevaluating (p x):

fn x =>
let val p_x = p x
in fn y =>
if p_x then (f x y) else (g x y)

end

The question is whether f x and g x should be lifted too. If we lift both f x
and g x, this will result in unnecessary computation, because either the value
of f x or g x will be thrown away. If e do not lift them, either f x or g x
will be repeatedly reevaluated.

Another deficiency of the above solution is that the conditional remains in-
side the inner λ-abstraction. Hence, the choice between the two branches of the
conditional is not made, until the value of y becomes known. (Despite the fact
that the value of the test p x is evaluated as soon as the value of x has been
supplied.)

Fortunately, this difficulty can be overcome by means of another trick: instead
of lifting the test from within fn y => ..., we can push fn y => over if p x
into the branches of the conditional!

Thus the expression can be rewritten as:

fn x =>
if p x then
fn y => (f x y)
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else
fn y => (g x y)

and then as

fn x =>
if p x then
let val f_x = f x
in (fn y => f_x y) end

else
let val g_x = g x
in (fn y => g_x y) end

which enables us to avoid unnecessary as well as repeated evaluation2.
Similarly, fn y => can be pushed into other control constructs, containing

conditional branches. For example,

fn x => fn y =>
case f x of

A => g x y
| B => h x y

can be rewritten as

fn x =>
case f x of

A => fn y => g x y
| B => fn y => h x y

and then as

fn x =>
case f x of

A => let val g_x = g x
in fn y => g_x y end

| B => let val h_x = h x
in fn y => h_x y end

The above transformation is usually applied to programs written in a lazy
language to achieve “improved full laziness” [Hol89,Hol90], but can also be ap-
plied to programs in a strict language. In the latter case, however, it may not
preserve termination properties of the program (which is also true of the trans-
formations performed by some automatic program specializers).

2 See, however, the previous footnote.
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4.5 Separating binding times in the interpreter

Now let’s return to the version of the interpreter in Figure 9, and try to separate
the static computations, which depend only on the text of the source program,
from the dynamic ones, which may also depend on the input data.

The function run is good enough already, and need not be revised. So let’s
consider the definition of the function eval. It has the form

fun eval phi ns exp vs =
case exp of
INT i => i

...

First of all, let’s move vs to the right hand side:

fun eval phi ns exp =
fn vs =>
case exp of
INT i => i

...

Now we can push fn vs => into the case construct:

fun eval phi ns exp =
case exp of
INT i => (fn vs => i)

...

so that the right hand side of each match rule begins with fn vs =>, and can
be transformed further, independently from the other right hand sides.

The final result of the transformations is shown in Figure 11. In the case of the
rules corresponding to INT, BIN, and IF, the transformation is straightforward:
we just lift static subexpressions. In the case of VAR, the right hand side takes
the form

fn vs => getVal (findPos ns n) vs

and we can perform η-reduction

getVal (findPos ns n)

Then we have to improve the definition of getVal. Again, this can be done by
moving vs to the right hand sides, and by applying η-reductions and lifting static
subexpressions. The revised version of getVal is shown in Figure 11 under the
name getVal’.

By the way, we could also circumvent the explicit lifting of static subexpres-
sions, by formulating the definition of getVal in terms of the infix operation o,
the composition of functions:

fun getVal’ 0 = hd
| getVal’ n = getVal’ (n-1) o tl
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fun getVal’ 0 = hd

| getVal’ n =

let val sel = getVal’ (n-1)

in fn vs => sel (tl vs) end

fun eval phi ns exp =

case exp of

INT i => (fn vs => i)

| VAR n =>

getVal’(findPos ns n)

| BIN(name, e1, e2) =>

let val b = evalB name

val c1 = eval phi ns e1

val c2 = eval phi ns e2

in (fn vs => b (c1 vs, c2 vs)) end

| IF(e0, e1, e2) =>

let val c0 = eval phi ns e0

val c1 = eval phi ns e1

val c2 = eval phi ns e2

in fn vs =>

if c0 vs <> 0 then c1 vs

else c2 vs

end

| CALL(fname, es) =>

let

val r = lookup phi fname

val c = evalArgs phi ns es

in fn vs => (!r) (c vs) end

and evalArgs phi ns [] = (fn vs => [])

| evalArgs phi ns (e :: es) =

let val c’ = eval phi ns e

val c’’ = evalArgs phi ns es

in fn vs => c’ vs :: c’’ vs end

Fig. 11. The result of lifting static subexpressions.

This solution appears to be more elegant, but finding it requires more “insight”.
(Besides, it is less efficient.)

Now let’s consider the right hand side of the rule corresponding to CALL.

fn vs =>
let val r = lookup phi fname
in (!r) (evalArgs phi ns es vs) end

Here the subexpressions lookup phi fname and evalArgs phi ns es are
static, and we just lift them out of the λ-abstraction.
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Finally, we have to transform the definition of evalArgs, which can be done
in two steps. First, we can replace the call to the higher-order function map with
explicit recursion:

and evalArgs phi ns [] vs = []
| evalArgs phi ns (e :: es) vs =

eval phi ns e vs ::
evalArgs phi ns es vs

After that the techniques described above become applicable.
In the end, we come to the definition of run in Figure 11, which “compiles”

the source program into a composition of λ-abstractions, representing the mean-
ing of the source program. Since the revised run examines a fragment of the
source program no more than once, it is much closer to a compiler, than to an
interpreter.

5 Higher-order functions with separated binding times

When separating binding times in our example interpreter, we had to replace
a call to the “general-puprose” functional map with explicit recursion. This is
evidently against the spirit of the “high-order” programming, for the possibility
to use functionals is one of its main attractive features.

5.1 Separating for free!

Holst and Hughes [HH90] suggest that binding times should be separated by
applying commutative-like laws, which can be derived from the types of poly-
morphic functions using the “free-theorem” approach [Wad89].

In our case a suitable law is

map (d o s) xs = map d (map s xs)

because, if s and xs are static subexpressions, and d a dynamic one, then
map s xs is a static subexpresion, which can be subsequently lifted out of the
dynamic context.

In the interpreter in Figure 9, the expression

map (fn e => eval phi ns e vs) es

can be transformed into

map ((fn c => c vs) o (eval phi ns)) es

and then into

map (fn c => c vs)
(map (eval phi ns) es)

Now the subexpression
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(map (eval phi ns) es)

is purely static, and can be lifted out.
A drawback of the above solution is that an intermediate list of pre-computed

functions has to be generated. Then this list will be repeatedly interpreted by
the outer call to map. Note that the length of the intermediate list is statically
determined by the list es, but the outer map makes no use of that fact.

5.2 Specialized general-purpose functionals

It seems that the weakness of the “free-theorem” approach is that the solution
has to be expressed in terms of the functionals that are already present in the
program being transformed. But, as shown by Holst and Gomard [HG91], it
is possible to eat the cake and have it too: namely, to let functionals express
recursion in the transformed program without introducing intermediate data
structures. This can be achieved by introducing transformed versions of func-
tionals.

Let’s return to the expression

map d (map s xs)

The difficulty here is that we can’t combine two occurrences of map into a single
static expression. To achieve that, we need to swap the arguments of the outer
map. So, let’s introduce a new function

fun map’ xs f = map f xs

Now we can rewrite map d (map s xs) as map’ (map s xs) d, and the subex-
pression map’ (map s xs) becomes purely static! Unfortunately, our joy is
somewhat premature, because map’ as defined above will not do anything, before
it has been given both arguments. We can however develop a better definition
for map’, that will start to work as soon as it is given only the first argument.

First, let’s write down an explicit recursive definition of map’:

fun map’ xs f = []
| map’ (x :: xs) f =

f x :: map’ xs f

Now we can apply the standard techniques described in Section 4: f should be
rearranged to the right hand sides, and the static subexpressions lifted. The
result is

fun map’ xs = (fn f => [])
| map’ (x :: xs) =

let val c = map’ xs
in fn f => f x :: c f end

Now the expression
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map (fn c => c vs)
(map (eval phi ns) es)

can be transformed into

map’ (map (eval phi ns) es)
(fn c => c vs)

where map’ (map (eval phi ns) es) is static.
This solution is not perfect, however: the intermediate list of functions will

still be generated by the inner map and immediately consumed by the outer
map’3.

This is due to the generality of map’, which is excessive in our particular case.
After all, our goal was to separate binding times in map (d o s) xs, and the
decision to reduce this expression to map d (map s xs) seems to be justified
by nothing, except for our “insight” and voluntarism.

A more straightforward approach is to introduce a specialized functional

fun map_dos s xs d = map (d o s) xs

whose direct definition is

fun map_dos s [] d = []
| map_dos s (x :: xs) d =

d (s x) :: map_dos s xs d

which, upon separating binding times, takes the form

fun map_dos s [] = (fn d => [])
| map_dos s (x :: xs) =

let val x1 = s x
val x2 = map_dos s xs

in fn d => d x1 :: x2 d end

Now the expression

map ((fn c => c vs) o (eval phi ns)) es

can be rewritten as

map_dos (eval phi ns) es (fn c => c vs)

A minor deficiency of that definition is that a strange auxiliary function
fn c => c vs has had to be introduced. This can be rectified, if we return to
the initial expression

map (fn e => eval phi ns e vs) es

which is a special case of
3 Unlike the previous solution, this list will be consumed only once, at “compile-time”,

rather than each time the value of vs is supplied.
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map (fn x => s x d) xs

Thus let’s introduce the functional

fun map_sxd s xs d =
map (fn x => s x d) xs

Defining it in terms of explicit recursion

fun map_sxd s [] d = []
| map_sxd s (x :: xs) d =

s x d :: map_sxd s xs d

and separating binding times, we obtain

fun map_sxd s [] = (fn d => [])
| map_sxd s (x :: xs) =

let val c1 = s x
val c2 = map_sxd s xs

in fn d => c1 d :: c2 d end

Now the expression

map (fn e => eval phi ns e vs) es

can be rewritten as

map_sxd (eval phi ns) es vs

5.3 Static values under dynamic control

Consider the expression

fn s => fn d => s (if d then 1 else 2)

in which the test in the conditional is dynamic, whereas both its branches are
static. Hence, the choice between the two branches cannot be made until the
value of d becomes known, for which reason the application of s gets delayed
too.

Nevertheless, if we push s into the conditional

fn s => fn d => if d then s 1 else s 2

the applications of s become static, so that they can be lifted out of fn d => :

fn s =>
let val x1 = s 1 and x2 = s 2
in fn d => if d then x1 else x2 end
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This works fine, if a static function s is immediately applied to a dynamic
conditional, but s may be applied to a function call s (f d) , where the body of
the definition of f is known to contain dynamic conditionals with static branches.
In this case we need a trick to propagate the application of s to the static values.

This trick may consist in rewriting the function f in continuation-passing
style, or CPS [HG91]. Namely, f is replaced with f’, its version in CPS, such
that s(f d) = f’ s d .

For example, let’s consider the function lookup in Figure 4, and the expres-
sion

s (lookup kvs d)

where s and kvs are static, and d dynamic. Since the definition of lookup con-
tains a conditional with a dynamic test

if k=n then v else lookup rest n

the result of the function is dynamic too. However, if we rewrite the definition
of lookup in CPS

fun lookup’ c [] n =
c (raise Fail "lookup")

| lookup’ c ((k,v) :: rest) n =
if k=n then c v

else lookup’ c rest n

and separate binding times

fun lookup’ c [] =
fn n => c (raise Fail "lookup")

| lookup’ c ((k,v) :: rest) =
let val x1 = c v

val x2 = lookup’ c rest
in
fn n =>
if k=n then x1 else x2 n

end

the expression s (lookup kvs d) can be rewritten as lookup’ s kvs d ,
where the subexpression lookup’ s kvs is purely static.

6 Conclusions

If we write language definitions in a first-order language, we badly need a partial
evaluator in order to remove the overhead introduced by the interpretation.
But, if our language provides functions as first-class values, an interpreter can
be relatively easily rewritten in such a way that it becomes more similar to a
compiler, rather than to an interpreter.

The language in which the interpreters are written need not be a lazy one,
but, if the language is strict, some attention should be paid by the programmer
to preserving termination properties of the program being transformed.
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Abstract. It is well-known that data abstraction badly coexists with
pattern matching. Pattern matching is applicable in the domain with
“transparent” structure of symbolical data while the traditional data ab-
straction supposes hiding data from the user. In this paper, it is shown
how it is possible to provide data abstraction at reception of all com-
pleteness of convenience of it by simple means within the framework of
the system of symbolic manipulations based on pattern matching. How-
ever, the problem is not put to hide abstract data from the programmer
completely.
In our case data abstraction is based on possibility of obtaining of values
of functions being inversed to functions-constructors that in turn is based
on possibility of dynamic computation of patterns. Used way of pattern
matching is based on multilevel computations.
The examples of data abstraction given in this paper are based on the
subsystem of algebraic computations that has been built in the system
of symbolic manipulations.

Keywords: Refal, multilevel computations, pattern matching, data ab-
straction, algebraic computations.

1 Introduction

The purpose of our project is such principle of computations when by means
(by a set of operators) G of a programming language some operator H can be
constructed: = G (M), where M — some material for making of operator H; this
operator will be used then in the program for transformation generally interme-
diate data D in intermediate result R: R = H (D). Such process of computations
combines as making of operator H, and application of this operator to some
data as a result for the purpose of obtaining a new data R which can be both
intermediate, and final. The combination of program code construction and its
execution is the subject of multilevel computations.

Generally operator H can contain a set of arbitrary operators of the source
language. In particular case operator H can contain the limited set of own op-
erators of language, such case just represents a subject of consideration of this
paper.
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a.
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Proceeding from the object in view, symbolic manipulations language should
be the language potentially providing both making of operators, and their ap-
plication. The opportunity of application of the constructed operators during
initial program execution also is a subject of the present development. Some
examples are given below.

Refal was taken [24,25,1,27,2,5], as a prototype of the programming language
for our purposes as the language with the developed mechanism of symbolic
manipulations. At the same time the language is compact enough and laconic in
its expressive possibilities, this feature is of great importance for programmer.

Multilevelness of computations, widely used in our approach and described
below, is based on the construction of a program code (program fragments) and
its execution in single process of program execution. It means, that the program
is changing itself during its execution, i.e. it is not static. At the same time all
existing implementations of Refal are based on the compilation which demands
static character and invariance of a program code. Therefore, an interpreting
way of program execution has been chosen for the implementation of the given
project. It assumes separate implementation.

It is expedient, besides, to build functional language as functionality is im-
portant property for the further works on automatic updating, optimization and
supercompilation [26] of programs written in such language. All the more so, as
the chosen prototype of building language, — Refal, — possesses functionality.

Let’s add that language of multilevel computations can be easily expanded
by the means providing convenient performance of algebraic computations likely
it takes place at Refal using. In papers [9,10,6] such expansion of Refal is reached
by various ways: as simple addition of library of the corresponding functions, al-
lowing to carry out those or other transformations of algebraic objects, including
the convenient form of input/output, and additional to library the special source
language of algebraic computations, programs in which are translated into Refal
by preprocessing.

Created language of multilevel computations is named Santra 3 (SANTRA
— Symbol-ANalytic TRAnsformations; digit 3 means following generation in re-
lation to language and system Santra 2 [15,16,17,18,19,20]). In comparison with
the system Santra 2 — Santra 3 is represented completely altered implementa-
tion constructed on the basis of last dialects of Refal (Refal-5 [27], Refal-6 [2],
Refal Plus [5]) in comparison with Refal 2 [25,1] which is used as base of Santra
2 language. It is supposed also that, besides altering language means of actually
symbolic manipulations, new language means of algebraic computations should
be anew implemented. In implementation aspect the library of algebraic func-
tions should be altered also. The sketch of language Santra 3 is given in paper
[8]. In this paper additional properties of language will be considered.

It would be desirable to note one feature of the given approach which is
the tendency in programming in general. In our case at first from the Refal a
language of multilevel computations was build actually, means of such compu-
tations were entered into Refal by insignificant expansion and updating of its
syntax and semantics. Then the constructed language has been expanded by ad-
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ditional means of algebraic computations so the language Santra 3 was built in
result. So we obtained conceptual hierarchy of languages in a direction of expan-
sion of their possibilities. The similar hierarchy is well looked through in Refal
family which has at least 4 versions, not considering the language Flac [6] and
the present language Santra 3. It has been supposing further use of the language
Santra 3 as the base for the creation of hierarchy of languages of the algebraic
computations having or universal character, but more simple on syntax and se-
mantics in respect of habitualness of the mathematician using it, or having this
or that problem-oriented character in various areas of applied mathematics. The
problem-oriented language Dislan intended for difference schemes construction
[11,12] can serve as an example. It was built on over language Santra [13,14]
which was the predecessor of language Santra 2.

It is possible to say, that the environment of family of languages of Refal type,
including language Flac and family of languages Santra, is the environment for
building domain-specific languages (DSL).

2 Related Work on Multilevel and Multistage Languages

Works on multilevel languages and multistage programming can be classified into
two ways: for languages without static typing and languages with static typing.
(The represented project concerns the first class of languages). In works for not
typed languages, i.e. languages without static typing, substantial programming
problems of building of metalanguages for the description of specialized construc-
tions and languages are solved basically. And researches for the typed languages
are devoted basically to a problem as, overcoming typing restriction, to build
multilevel languages with safe system of typing. From our point of view, at the
given stage of development of these methods typing too much complicates and
blocks up the metalanguage building though in distant prospect it can really
lead to occurrence of reliable and convenient means of programming.

2.1 Typed Languages

Historically the earliest line of works on languages with means of dynamic gen-
eration of programs goes back to the language Lisp and its “descendant” - to the
language Scheme [21]. Occurrence of the language Scheme was in the late seven-
ties connected with many “unneatnesses” of the language Lisp, preventing gener-
ation of programs. The language Scheme is nice for the “hygienic” macrosystem
in which there is no mess in levels of the local variables, taking place in the lan-
guage Lisp. However, a macrosystem in Scheme as all macrosystems, “tuned” for
definition only one level over the programming language. Therefore and syntax
of “hygienic” macrodefinitions in Scheme is adjusted for such narrow application.

Though among users of Lisp and Scheme style of programming with dynamic
generation of programs, on the basis of these languages, was always popular, as
far as we know, except two-level “hygienic” macro means, means of multilevel
programming have not been developed. From our point of view, it is connected
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with too “low level” languages Lisp and Scheme. Our experience of working out
of multilevel language shows that use of language of higher level of Refal type
[27] is required.

Among the modern languages without static typing “languages of scenarios”
(scripting languages), such as Tcl, Phyton, Ruby, etc are popular. As a rule, they
allow to generate and execute dynamically programs, but — using for programs
code forming simple operations over lines and not offering means for multilevel
programming.

Thus, among the not typed languages till now there are still no languages
supporting means of fully-featured multilevel programming though, from our
point of view, such languages are just convenient for the decision of the given
problem. In the present project the step on filling of this gap is made.

2.2 Untyped Languages

A more formalized stage in the development of ideas of multilevel languages
has begun with the end of 80th years [7] on the basis of the ideas of partial
computations and the automatic analysis of the program for its division into
execution stages which have appeared by then. The concept of only two-level
languages [7] was first studied and the problem of development of multilevel
programming was not put.

The following stage in the development of multilevel languages has been
summed up in the late nineties by publications [22,23]. Authors have developed
the typed language MetaML in the frameworks of which the programmer can
write down multilevel programs. The basic problem which was solved by the
authors of MetaML — the making of an adequate system of types.

From the recent publications on multilevel languages the language ReFLect
[4] is of interest. It is the universal functional typed language, but first of all
intended for special practical application in systems of modeling of integrated
schemes logic (in the Intel Company). Multilevel language is used for the gener-
ation of schemes from compact descriptions.

In these works the basic difficulties of language’s building are connected with
their typing. These problems are not present in our approach.

In logic programming the idea of multilevelness for support of self-application
of logic theories and programs also was investigated. For example, in the paper
[3] the expansion of the Prologue language for the processing of mathematical
theories by multilevel means is offered. However, the metalogic programming
language Alloy defined in this paper was not developed further, probably be-
cause of its high complexity and narrow orientation on the processing of logic
systems. It sharply differs from our purposes of working out the universal mul-
tilevel functional language of symbolic manipulation.

3 Multilevel Expression

Language Santra 3 differs from Refal mainly in the aspect that in Refal com-
putations are determined by functions calls only while in language Santra 3
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concept of computations is expanded by construction and execution of program
fragments in addition to functions calls. For this aim the concept of structural
expression is entered, such expressions syntactically are embraced by parenthe-
ses. Basic elements of structural expressions in the language Santra 3 are, besides
traditional for Refal calls of functions, — names of functions preceded by sign #,
numbers, structural expressions in parentheses and variables. Functions calls are
expanded by arithmetic expressions also. Computation of structural expressions
in parentheses is initiated by angular brackets: <(structural expression )>.
As an example of the of concrete structural expression computation divining can
serve the following: <(55 (#Alfa) e1 ‘123’)>. Here 55 and Alfa — number
and the name of function translated in internal representation of the computer,
e1 — a variable instead of which its value must be substituted, and ‘123’ — the
literally given text. This text is not subject for computation that is pointed out
by means of inverted commas, however, in the course of computation of struc-
tural expression inverted commas are evacuated, and the number 123 becomes
a set of digits already without inverted commas. Thus, inverted commas are
means of a delay of computations while angular brackets are means of compu-
tations initiation. Besides, calculated values of self-defined elements, such as 55
and Alfa from an example above, are not subject to the further computation.
However, they can be a part of structural expression so that to participate in
the further computations. For example, Alfa can be a name of calling function.

The values of structural expressions are new structural expressions, in par-
ticular case these values represent new fragments of the program or computed
values in essence. On this in addition to Refal 6 [2] all computations are based
in language Santra 3.

Traditional compilation imposes a condition of static character of program
fragments, operators and functions owing to what it is inapplicable for multilevel
computations. Therefore in this case just interpretation is chosen which is that
in essence.

4 Multilevel Computations

Structural expressions are the basis of multilevel computations and represent
the special form of coding (giving) of the program. The coding essence consists
in a marking, what parts of the program need to be left invariable and what
need to be transformed. The invariance of parts of fragments is provided by a
delay of their transformation (computation) up to a certain stage while other
parts of the program should be transformed by the general rules. Thus, for
multilevel computations the way of marking is necessary, first, computation of
what program parts needs to be delayed and, secondly, at what stage of the
program execution these parts should be computed, as there can be some stages
of program forming. Such marking is provided by means of a so-called metacode.

Metacode using is known in the supercompiler [26], however, there it is used
for a marking of the program for the purpose of differentiation of the status of
variables for further program transformation. In our case the metacode is used,
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the main thing, for a marking, what fragments need to be calculated, and what
computation needs to be delayed. Such regular use of a special metacode for
traditional program executions is of interest for programming.

Thus, structural expressions are the program fragments given in a metacode.

5 Metacode

Main principle of a metacode as means for supporting of multilevel computations
is the way of program making at which parts of the program where computation
demands a delay, are given in the literal form. The degree of a delay is determined
by the level of a nesting of literals. As a result at the program execution at each
stage of literal use there is a text of a corresponding level of a nesting that allows
to use it as a fragment of the program at a corresponding step of it performance.

The concept of multilevelness also includes the performance of partial compu-
tations the results of which can be used in further computations. The examples
are transformation of numbers and functions names to their internal computer
representation. Besides, rather complex computations can be executed and val-
ues can be obtained, and these values can be included in building program.
Repeated use of such values can essentially raise the efficiency of computations
as a whole.

At the program execution including its dynamic construction, the trans-
formed fragments can be transferred further for the subsequent transformation
or execution by means of variables or arguments of functions; also the generated
fragments can be executed in place for what angular brackets are used, it has
been mentioned above. Angular brackets are used as well for the invocation of
the transferred fragments and also in other places of the program. Difference
from a traditional way of use of the calculated values by means of variables
consists in an opportunity of building of the program fragments including just
variables values with absence of variables themselves.

For the giving of the literal structures the essential nesting of which is typical
for the mapping of multilevel computations, a pair of inverted commas is used. It
is demonstrable, convenient and besides the length of the text at a nesting grows
as 2*n where n is the depth of a nesting. In connection with a special role of
“literals” for the considered way of programming of multilevel computations and
importance of their essential nesting, the special term — ’multitext’ is entered
for them. This term is entered also for the reflection of potentially consecu-
tive, multistage stile of transformation of structural expressions and “literals”
entrances into them. We will give a multitext example.

The text, its multitext, the multitext from the multitext:

ABC‘123 --> ‘ABC\‘123’ --> ‘‘ABC\‘123’’

Let’s give an example of dynamic generation of fragments of the program and
their execution. Let, for example, it is necessary to calculate value of some ex-
pression and to increase it by 1. And let this expression, for example, -1+3*5 be
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assigned in a symbolical kind as a value to the variable eX. Then for execution
of the given actions in the language Santra 3 it is necessary to write down:

‘-1+3*5’: eX, <1 + <(eX)>>

As a result number 15 will be obtained as the value of the given expression.
The main difference from Refal 6 [2] in this example is the use of multitexts

instead of literals and the use of angular brackets for arithmetic expression giving
and performance of actions over expressions in brackets.

In this example at first the multitext

‘-1+3*5’

will be transformed into the text

-1+3*5

which will be assigned as a value to the variable eX. Then the program fragment
<(eX)> will be generated and the text -1+3*5 will be its value. Further this
text taking into account a sign - at its beginning will be inserted in resulting
expression <1 +...> instead of dots. It will lead to that the new fragment of the
program will be built which will be already finally executed.

The given example does not represent essentially anything new in comparison
with Refal, it is demonstrated with the purpose to make it easier to accept syntax
of the language Santra 3.

6 Functions-constructors in Patterns

It is interesting to use in patterns functions-constructors which arguments con-
tain variables. In this case the value of function-constructor, containing variables
of the pattern without change, will enter in the pattern. Therefore, the set of the
objects defined by the pattern as a whole will depend on the set of the objects
defined by the values of function-constructor also.

This function when used entirely as the pattern will define in this case not a
concrete matrix, but a set of matrixes of the given dimension if a number of ele-
ments of these matrixes is fixed, and if variables stand instead of other elements.
Let’s look at an example. Let function FORMMA be a function forming a matrix
of the given dimension. It is a function-constructor in relation to the arguments
that give matrix elements. Its arguments are the dimension of a matrix given by
the numbers of rows and columns, and the elements listed in rows. For example,
for forming of a matrix 2*2

1 2
3 4

it is necessary to write down
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<#FORMMA (<2>) (<2>)
(<1>) (<2>)
(<3>) (<4>)>

This function can be used also for giving the set of matrixes of the given dimen-
sion on which main diagonal arbitrary elements stand, as follows:

: <#FORMMA (<2>) (<2>)
(e11) (<2>)
(<3>) (e22)> =

Here instead of the elements standing on the main diagonal, variables e11 and
e22 are used. The sign = in the end of text is one of the separators of the
operators of language, it is similar to how it takes place in language Refal 6 [2].

If now these two examples will be concatenated as a program fragment, at
its execution, the concrete matrix will be compared with the pattern of a matrix
of the same dimension, so the value number 1 will be assigned to variable e11,
and the value number 4 will be assigned to variable e22. Furthermore, numbers
<2> and <3>, which stand not on the main diagonal of an initial matrix and
a matrix-pattern, should coincide, and that, naturally, takes place. Thus, the
values of a function to be inverted to function-constructor FORMMA in relation to
elements of the main diagonal of a matrix will be obtained.

7 Functions

Let’s give an example of the function calculating a factorial of the integer non-
negative number and described in the mathematics by a recurrent relations

FACT (1) = 1
FACT (N) = N * FACT (N-1)

In language Santra 3 this function is described by means of special function FDEF
as follows:

<#FDEF (‘FACT’) (‘
{
(<1>) = <1>;
(eN) = <(eN) * #FACT (<(eN)-1>)>;
}

’)> =

Here function FDEF is the system metafunction intended for defining of new
functions. Its call, as well as a call of any function, is pointed by prefix sign #, and
its arguments are the name of defining function FACT and the text of the program
corresponding to mathematical definition, given by the multitext. Without going
into other syntactic and semantic details, we would like to notice that giving this
program text as the multitext allows in the process of the execution of the initial
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program to prepare it for the execution and to delay the generated function till
the moment of its call. Thus one program is generating dynamically in the process
of execution of another program.

The moment of execution of the given program is defined by the call of the
function representing this program, by its name, for example:

<#FACT (<100>)>

The calculated value, naturally, should be a part of the expression in which it is
used, properly.

8 Abstract Data Types

Another function-constructor is the function of assigning type to the object.
It is named CLASS as the word “class” covers a wide sphere of subjects and
phenomena. Its first parameter is the classname, and the second is classified
(typified) expression. For example, for the classification of structure of the matrix
which is the value of a variable eM as an abstract type “matrix”, it is necessary to
write: <#CLASS (‘M’) (eM)> or <#CLASS (‘M’, eM)>, which is the same. Here
letter M is using as a class name.

Function CLASS is the function-constructor in relation to the second pa-
rameter. This function is used, for example, in the description of the function
FORMMU forming a matrix of an abstract type and having a format of the function
FORMMA, in the following way:

<#FDEF (‘FORMMU’)
(‘eA = <’#CLASS(‘M’)‘(<<(’#FORMMA‘eA)>>)>

’)>=

Here the function FORMMA — mentioned above function directly forming matrix
structure. By a call of the function FORMMU the function FORMMA is called first then
the type “matrix” is assigned to the generated by the function FORMMA structure
what is carried out by the function CLASS call. All parameters of the function
FORMMU are passed to the function FORMMA entirely by means of the only variable
eA. (By the way, in the example of finding the elements of a matrix given above
instead of the function FORMMA it would be possible to use the function FORMMU).
Syntax of a call of the function FORMMA has also some specifics that we will not
mention here.

Now for actions with typified matrixes it is necessary to describe operations
so that it would be possible to call corresponding functions for actions with
matrixes in its pure content, i.e. without attributes of typing. For example,
arithmetic operation + occurrence in arithmetic expression causes the function
ADDU, intended for addition of objects of various types of data, call accordingly.
This function should distinguish the types of data and call the corresponding
function which is carrying out the addition of objects in the pure content.
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The example of the description of the function ADDU in special case for recog-
nition only objects of matrix type and a call of corresponding function performing
addition of matrixes in its pure content is the following:

<#FDEF (‘ADDU’) (‘
{
(<’#CLASS(‘M’)‘(eM1)>, <’#CLASS(‘M’)‘(eM2)>) =
<’#CLASS(‘M’)‘(<’#ADDM‘(eM1, eM2)>)>;

}
’)>=

Let’s look at this in more details.
The definition of the function ADDU is given by the function FDEF, and the

function CLASS serves for giving the “matrix” data type. The sign , is used for the
separation of the two added parameters, and the sign = is used for the separation
of matrixes recognition and their assigning as values to variables eM1 and eM2
from the following action: actually addition of matrixes in its pure content by
the function ADDM and result classification as matrixes of abstract type by the
function CLASS. Here the delay of computations is actively used; it is possible to
illustrate it by displaying a delay of computations by a lower level on a vertical
instead of the use of inverted commas as follows:

<#FDEF( )( #CLASS( ) #CLASS( ) #CLASS( ) #ADDM )>
ADDU {(< M (eM1)>, < M (eM2)>)=< M (< (eM1, eM2)>)>;}

Here at the bottom level the elements which should be passed to the functions
FDEF without change are located, i.e. their computations concerning preparation
of parameters should be delayed, for what they have been presented by multi-
texts. Furthermore, type of matrix M is simply a letter which then is used by the
function CLASS as a classname. Similarly, the name of the defined function ADDU
is also a set of letters similar. These elements essentially are the literals given by
the means of a of pair inverted commas.

Elements, the computation of which should be delayed in essence, are also
entered by the means of multitexts. Two aspects of a delay of computations in
this case take place with the aim of providing of: 1) abstract data type recogni-
tion and extraction of matrixes structures in the pure content 2) actual addition
of matrixes and typing the result as a matrix. Abstract data types providing
consists of 1.1) pattern variables forming and 1.2) call of the function CLASS
with these variables as arguments. Each of these stages would be more logically
represented by the separate level of the multitext the depth of which would point
out the order of it fulfilling. Accordingly, the number of levels should be 3, in-
cluding the external level of the call of the function FDEF and the transformation
of the names of the functions CLASS and ADDM into references to functions. The
second aspect does not demand splitting on sublevels and can be left, as shown
above. Let’s list the contents of these levels integrally:

0. the function FDEF call, names of the functions FDEF, CLASS and ADDM which
must be transformed in references to the functions, plus corresponding paren-
thesis;
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1. the classname of matrixes, the variables which must be formed with corre-
sponding parenthesis, the syntactic signs of statements and functions, which
form result, calls with the corresponding parenthesis and the angle brackets;

2. the syntactic signs of the function CLASS call for the purpose of pattern
forming, including the necessary parenthesis, and just a call, indicated by
angle brackets.

It is possible to illustrate it as follows:

<#FDEF( )( #CLASS( ) #CLASS( ) #CLASS( ) #ADDM )>
ADDU { M (eM1) M (eM2) = < M (< (eM1, eM2)>)>;}

(< >, < >)

In essence, at the top zero level of the multitexts the names of the functions FDEF,
CLASS and ADDM are transformed into the references to functions and the call of
the function FDEF is being executed. Transition to the following levels is caused by
the necessity to pass the parameters of the function FDEF in its original invariable
kind already for the substantial transformation. Furthermore, actually just the
function FDEF forms the statement into which calls of the functions CLASS and
ADDM, brackets, a semicolon and variables must be entered properly. The sequence
of actions for the correct forming of a name of defined function and actually the
statement representing its body is set by corresponding levels of multitexts.
Furthermore, at second level there are only the angular brackets which provide
the function CLASS calls and parenthesis, containing them (the comma relates
to the parenthesis structure), for the purpose of data abstraction providing.
However, it turned out to be that the step of the data abstraction providing,
caused by the act of the function-constructor CLASS call, does not depend on
the step caused by the act of pattern variables forming. In this connection it
appeared possible to join together two bottom levels of providing of abstract
data types due to their independence which takes place in essence and to avoid
the occurrence of the second level by that as it was shown in the example given
in the beginning.

9 Pattern Matching and Data Abstraction

In this paper it is shown how it is possible to provide data abstraction by the
means of only one function intended for data types setting within the framework
of the system of symbolic manipulations based on the pattern matching. Such
opportunity follows from a special way of building of patterns which is so taken
that to provide a possibility to obtain values of the inversed functions. As a
result we get the opportunity of obtaining a value of function being inversed
to function which set the types of data. Obtaining of such value allows both to
distinguish data by their types, and to take this data itself for the performance
of operations above them, that is a necessary condition of supporting the data
abstraction. The necessary way of building the patterns is provided on the basis
of multilevel computations. The noted opportunity of data abstraction appears
entirely within the framework of the mechanism of symbolic manipulations based
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on the pattern matching principle at providing of multilevel computations in a
special manner.

The paper by Philip Wadler [28] also is devoted to a problem of interrelation
of pattern matching and abstract data types; Wadler offers a way of reconciling
pattern matching with data abstraction for the purpose of possibility of their
fitting together, while both the mechanism of pattern matching and the mech-
anism of data abstraction are self-defined and independent mechanisms. In his
paper possibility of valuable qualities of a combination of two these mechanisms
is shown.

Thus, the approach offered by us and Wadler’s approach seem to be abso-
lutely different. First, Wadler considers two mechanisms and, secondly, these
mechanisms are independent, while in our case only one mechanism of sym-
bolic manipulations on the basis of pattern matching takes place. Nevertheless,
the doubtless conceptual likeness of the two approaches takes place, despite the
essential distinction of objects considered. We will look at it in more details.

According to Wadler, the mechanism of reconciling pattern matching with
data abstraction offered by him could allow to use all possibilities of pattern
matching during the use of data abstraction. Initial Wadler’s position consists
in that the pattern matching is the convenient and effective mechanism of the
data transformation for such purposes as the proof of correctness of programs or
their transformation; however, the presence of abstract data brings these valu-
able qualities to nothing. The problem of reconciling pattern matching with data
abstraction is caused by especially various ways of data representation and their
processing: for the systems based on pattern matching the representation pro-
viding the convenient review of objects structure is used and for data abstraction
systems the representation is approached to machine one for the purpose of peak
efficiency reaching and compactness. As a result data of abstract types appear to
be hidden from direct visualization by means of pattern matching. For the pur-
pose of such visualization Wadler suggests to enter special functions, separately
for each concrete data type. Besides such functions entering it is necessary to
enter inversed functions so for transformation of the obtained results by pattern
matching means into abstract type. The term “visualization” is used just as a re-
flection of such qualities as clearness, obviousness, transparency and convenience
taking place in pattern matching systems.

Here two things are looking through at once: 1) at us all actions are carried
out exclusively within the framework of system of symbolic manipulations, and
Wadler connects absolutely various two mechanisms: the mechanism of symbolic
manipulations and the data abstraction mechanism and 2) at us it is entered the
only one function, at Wadler — two mutually inversed functions. It is interesting
that at visible distinction there is one similarity: Wadler in addition to the ab-
stract data visualization function suggests to enter inversed to it function while
at us unique function of data type setting is entered, and computation of value
of inversed to it function is carried out automatically on the basis of certain
manner of performance of symbolic manipulations. Thus, at us two functions,
direct and inversed take place also. However, inversed function is virtual, and
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it does not need to be defined unlike Wadler. Thus, despite formal distinction
of two approaches, they conceptually have much in common in view of a gener-
ality of properties both symbolic manipulations, and data abstraction without
dependence from their implementations.

It is necessary to notice also, that Wadler offers not a concrete implementa-
tion, but only the interesting idea which is subject to the further development.
We offer the concrete implementation, automatically giving the possibility to
use the data abstraction during the performance of symbolic manipulations, in
particular, for algebraic computations. Despite all that, undoubtedly, the ideas
of Wadler deserve attention.

10 Conclusion

In this paper a number of properties is shown which were received in the partic-
ular case of multilevel computations with the use of the symbolic manipulations
language on the basis of the pattern matching of Refal type during the inclusion
of a possibility to compute the patterns in the language. These properties are
the following:

– the possibility to find value of functions being inversed to the functions-
constructors at their use as a part of the patterns and

– on this basis — directly following possibility of data abstraction.

Let’s notice that the specified possibilities automatically become the possibilities
as well of the subsystems of algebraic computations in full at its implementa-
tion into the system of the symbolic manipulations constructed on the basis
of the provided ideas. Implementation itself conceptually does not concern the
mechanism of symbolic manipulations, and changes syntax of the constructed
language a bit. These changes consist, mainly, in the insignificant expansion of
the language of symbolic manipulations with new possibilities.

The expansion of Refal by possibility to compute patterns leads to interest-
ing and valuable qualities. It is necessary to note the naturalness of inclusion
in the language of this possibility which practically does not change the syntax
of the source language, but only expands it possibilities, due to new semantic
properties. Additional inclusion in the language of the means of algebraic com-
putations appeared to have little effect on the syntax of the language which
shows the expediency of expansion. The possibilities of algebraic computations
were automatically added with the means of data abstraction and, besides, were
essentially expanded by the full volume of symbolic manipulations in the widest
sense, including symbolical making of new program fragments and their execu-
tion that can appear important for algebraic computations in essence.
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