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Abstract. It is well-known that data abstraction badly coexists with
pattern matching. Pattern matching is applicable in the domain with
“transparent” structure of symbolical data while the traditional data ab-
straction supposes hiding data from the user. In this paper, it is shown
how it is possible to provide data abstraction at reception of all com-
pleteness of convenience of it by simple means within the framework of
the system of symbolic manipulations based on pattern matching. How-
ever, the problem is not put to hide abstract data from the programmer
completely.
In our case data abstraction is based on possibility of obtaining of values
of functions being inversed to functions-constructors that in turn is based
on possibility of dynamic computation of patterns. Used way of pattern
matching is based on multilevel computations.
The examples of data abstraction given in this paper are based on the
subsystem of algebraic computations that has been built in the system
of symbolic manipulations.

Keywords: Refal, multilevel computations, pattern matching, data ab-
straction, algebraic computations.

1 Introduction

The purpose of our project is such principle of computations when by means
(by a set of operators) G of a programming language some operator H can be
constructed: = G (M), where M — some material for making of operator H; this
operator will be used then in the program for transformation generally interme-
diate data D in intermediate result R: R = H (D). Such process of computations
combines as making of operator H, and application of this operator to some
data as a result for the purpose of obtaining a new data R which can be both
intermediate, and final. The combination of program code construction and its
execution is the subject of multilevel computations.

Generally operator H can contain a set of arbitrary operators of the source
language. In particular case operator H can contain the limited set of own op-
erators of language, such case just represents a subject of consideration of this
paper.
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a.
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Proceeding from the object in view, symbolic manipulations language should
be the language potentially providing both making of operators, and their ap-
plication. The opportunity of application of the constructed operators during
initial program execution also is a subject of the present development. Some
examples are given below.

Refal was taken [24,25,1,27,2,5], as a prototype of the programming language
for our purposes as the language with the developed mechanism of symbolic
manipulations. At the same time the language is compact enough and laconic in
its expressive possibilities, this feature is of great importance for programmer.

Multilevelness of computations, widely used in our approach and described
below, is based on the construction of a program code (program fragments) and
its execution in single process of program execution. It means, that the program
is changing itself during its execution, i.e. it is not static. At the same time all
existing implementations of Refal are based on the compilation which demands
static character and invariance of a program code. Therefore, an interpreting
way of program execution has been chosen for the implementation of the given
project. It assumes separate implementation.

It is expedient, besides, to build functional language as functionality is im-
portant property for the further works on automatic updating, optimization and
supercompilation [26] of programs written in such language. All the more so, as
the chosen prototype of building language, — Refal, — possesses functionality.

Let’s add that language of multilevel computations can be easily expanded
by the means providing convenient performance of algebraic computations likely
it takes place at Refal using. In papers [9,10,6] such expansion of Refal is reached
by various ways: as simple addition of library of the corresponding functions, al-
lowing to carry out those or other transformations of algebraic objects, including
the convenient form of input/output, and additional to library the special source
language of algebraic computations, programs in which are translated into Refal
by preprocessing.

Created language of multilevel computations is named Santra 3 (SANTRA
— Symbol-ANalytic TRAnsformations; digit 3 means following generation in re-
lation to language and system Santra 2 [15,16,17,18,19,20]). In comparison with
the system Santra 2 — Santra 3 is represented completely altered implementa-
tion constructed on the basis of last dialects of Refal (Refal-5 [27], Refal-6 [2],
Refal Plus [5]) in comparison with Refal 2 [25,1] which is used as base of Santra
2 language. It is supposed also that, besides altering language means of actually
symbolic manipulations, new language means of algebraic computations should
be anew implemented. In implementation aspect the library of algebraic func-
tions should be altered also. The sketch of language Santra 3 is given in paper
[8]. In this paper additional properties of language will be considered.

It would be desirable to note one feature of the given approach which is
the tendency in programming in general. In our case at first from the Refal a
language of multilevel computations was build actually, means of such compu-
tations were entered into Refal by insignificant expansion and updating of its
syntax and semantics. Then the constructed language has been expanded by ad-
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ditional means of algebraic computations so the language Santra 3 was built in
result. So we obtained conceptual hierarchy of languages in a direction of expan-
sion of their possibilities. The similar hierarchy is well looked through in Refal
family which has at least 4 versions, not considering the language Flac [6] and
the present language Santra 3. It has been supposing further use of the language
Santra 3 as the base for the creation of hierarchy of languages of the algebraic
computations having or universal character, but more simple on syntax and se-
mantics in respect of habitualness of the mathematician using it, or having this
or that problem-oriented character in various areas of applied mathematics. The
problem-oriented language Dislan intended for difference schemes construction
[11,12] can serve as an example. It was built on over language Santra [13,14]
which was the predecessor of language Santra 2.

It is possible to say, that the environment of family of languages of Refal type,
including language Flac and family of languages Santra, is the environment for
building domain-specific languages (DSL).

2 Related Work on Multilevel and Multistage Languages

Works on multilevel languages and multistage programming can be classified into
two ways: for languages without static typing and languages with static typing.
(The represented project concerns the first class of languages). In works for not
typed languages, i.e. languages without static typing, substantial programming
problems of building of metalanguages for the description of specialized construc-
tions and languages are solved basically. And researches for the typed languages
are devoted basically to a problem as, overcoming typing restriction, to build
multilevel languages with safe system of typing. From our point of view, at the
given stage of development of these methods typing too much complicates and
blocks up the metalanguage building though in distant prospect it can really
lead to occurrence of reliable and convenient means of programming.

2.1 Typed Languages

Historically the earliest line of works on languages with means of dynamic gen-
eration of programs goes back to the language Lisp and its “descendant” - to the
language Scheme [21]. Occurrence of the language Scheme was in the late seven-
ties connected with many “unneatnesses” of the language Lisp, preventing gener-
ation of programs. The language Scheme is nice for the “hygienic” macrosystem
in which there is no mess in levels of the local variables, taking place in the lan-
guage Lisp. However, a macrosystem in Scheme as all macrosystems, “tuned” for
definition only one level over the programming language. Therefore and syntax
of “hygienic” macrodefinitions in Scheme is adjusted for such narrow application.

Though among users of Lisp and Scheme style of programming with dynamic
generation of programs, on the basis of these languages, was always popular, as
far as we know, except two-level “hygienic” macro means, means of multilevel
programming have not been developed. From our point of view, it is connected
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with too “low level” languages Lisp and Scheme. Our experience of working out
of multilevel language shows that use of language of higher level of Refal type
[27] is required.

Among the modern languages without static typing “languages of scenarios”
(scripting languages), such as Tcl, Phyton, Ruby, etc are popular. As a rule, they
allow to generate and execute dynamically programs, but — using for programs
code forming simple operations over lines and not offering means for multilevel
programming.

Thus, among the not typed languages till now there are still no languages
supporting means of fully-featured multilevel programming though, from our
point of view, such languages are just convenient for the decision of the given
problem. In the present project the step on filling of this gap is made.

2.2 Untyped Languages

A more formalized stage in the development of ideas of multilevel languages
has begun with the end of 80th years [7] on the basis of the ideas of partial
computations and the automatic analysis of the program for its division into
execution stages which have appeared by then. The concept of only two-level
languages [7] was first studied and the problem of development of multilevel
programming was not put.

The following stage in the development of multilevel languages has been
summed up in the late nineties by publications [22,23]. Authors have developed
the typed language MetaML in the frameworks of which the programmer can
write down multilevel programs. The basic problem which was solved by the
authors of MetaML — the making of an adequate system of types.

From the recent publications on multilevel languages the language ReFLect
[4] is of interest. It is the universal functional typed language, but first of all
intended for special practical application in systems of modeling of integrated
schemes logic (in the Intel Company). Multilevel language is used for the gener-
ation of schemes from compact descriptions.

In these works the basic difficulties of language’s building are connected with
their typing. These problems are not present in our approach.

In logic programming the idea of multilevelness for support of self-application
of logic theories and programs also was investigated. For example, in the paper
[3] the expansion of the Prologue language for the processing of mathematical
theories by multilevel means is offered. However, the metalogic programming
language Alloy defined in this paper was not developed further, probably be-
cause of its high complexity and narrow orientation on the processing of logic
systems. It sharply differs from our purposes of working out the universal mul-
tilevel functional language of symbolic manipulation.

3 Multilevel Expression

Language Santra 3 differs from Refal mainly in the aspect that in Refal com-
putations are determined by functions calls only while in language Santra 3
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concept of computations is expanded by construction and execution of program
fragments in addition to functions calls. For this aim the concept of structural
expression is entered, such expressions syntactically are embraced by parenthe-
ses. Basic elements of structural expressions in the language Santra 3 are, besides
traditional for Refal calls of functions, — names of functions preceded by sign #,
numbers, structural expressions in parentheses and variables. Functions calls are
expanded by arithmetic expressions also. Computation of structural expressions
in parentheses is initiated by angular brackets: <(structural expression )>.
As an example of the of concrete structural expression computation divining can
serve the following: <(55 (#Alfa) e1 ‘123’)>. Here 55 and Alfa — number
and the name of function translated in internal representation of the computer,
e1 — a variable instead of which its value must be substituted, and ‘123’ — the
literally given text. This text is not subject for computation that is pointed out
by means of inverted commas, however, in the course of computation of struc-
tural expression inverted commas are evacuated, and the number 123 becomes
a set of digits already without inverted commas. Thus, inverted commas are
means of a delay of computations while angular brackets are means of compu-
tations initiation. Besides, calculated values of self-defined elements, such as 55
and Alfa from an example above, are not subject to the further computation.
However, they can be a part of structural expression so that to participate in
the further computations. For example, Alfa can be a name of calling function.

The values of structural expressions are new structural expressions, in par-
ticular case these values represent new fragments of the program or computed
values in essence. On this in addition to Refal 6 [2] all computations are based
in language Santra 3.

Traditional compilation imposes a condition of static character of program
fragments, operators and functions owing to what it is inapplicable for multilevel
computations. Therefore in this case just interpretation is chosen which is that
in essence.

4 Multilevel Computations

Structural expressions are the basis of multilevel computations and represent
the special form of coding (giving) of the program. The coding essence consists
in a marking, what parts of the program need to be left invariable and what
need to be transformed. The invariance of parts of fragments is provided by a
delay of their transformation (computation) up to a certain stage while other
parts of the program should be transformed by the general rules. Thus, for
multilevel computations the way of marking is necessary, first, computation of
what program parts needs to be delayed and, secondly, at what stage of the
program execution these parts should be computed, as there can be some stages
of program forming. Such marking is provided by means of a so-called metacode.

Metacode using is known in the supercompiler [26], however, there it is used
for a marking of the program for the purpose of differentiation of the status of
variables for further program transformation. In our case the metacode is used,
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the main thing, for a marking, what fragments need to be calculated, and what
computation needs to be delayed. Such regular use of a special metacode for
traditional program executions is of interest for programming.

Thus, structural expressions are the program fragments given in a metacode.

5 Metacode

Main principle of a metacode as means for supporting of multilevel computations
is the way of program making at which parts of the program where computation
demands a delay, are given in the literal form. The degree of a delay is determined
by the level of a nesting of literals. As a result at the program execution at each
stage of literal use there is a text of a corresponding level of a nesting that allows
to use it as a fragment of the program at a corresponding step of it performance.

The concept of multilevelness also includes the performance of partial compu-
tations the results of which can be used in further computations. The examples
are transformation of numbers and functions names to their internal computer
representation. Besides, rather complex computations can be executed and val-
ues can be obtained, and these values can be included in building program.
Repeated use of such values can essentially raise the efficiency of computations
as a whole.

At the program execution including its dynamic construction, the trans-
formed fragments can be transferred further for the subsequent transformation
or execution by means of variables or arguments of functions; also the generated
fragments can be executed in place for what angular brackets are used, it has
been mentioned above. Angular brackets are used as well for the invocation of
the transferred fragments and also in other places of the program. Difference
from a traditional way of use of the calculated values by means of variables
consists in an opportunity of building of the program fragments including just
variables values with absence of variables themselves.

For the giving of the literal structures the essential nesting of which is typical
for the mapping of multilevel computations, a pair of inverted commas is used. It
is demonstrable, convenient and besides the length of the text at a nesting grows
as 2*n where n is the depth of a nesting. In connection with a special role of
“literals” for the considered way of programming of multilevel computations and
importance of their essential nesting, the special term — ’multitext’ is entered
for them. This term is entered also for the reflection of potentially consecu-
tive, multistage stile of transformation of structural expressions and “literals”
entrances into them. We will give a multitext example.

The text, its multitext, the multitext from the multitext:

ABC‘123 --> ‘ABC\‘123’ --> ‘‘ABC\‘123’’

Let’s give an example of dynamic generation of fragments of the program and
their execution. Let, for example, it is necessary to calculate value of some ex-
pression and to increase it by 1. And let this expression, for example, -1+3*5 be
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assigned in a symbolical kind as a value to the variable eX. Then for execution
of the given actions in the language Santra 3 it is necessary to write down:

‘-1+3*5’: eX, <1 + <(eX)>>

As a result number 15 will be obtained as the value of the given expression.
The main difference from Refal 6 [2] in this example is the use of multitexts

instead of literals and the use of angular brackets for arithmetic expression giving
and performance of actions over expressions in brackets.

In this example at first the multitext

‘-1+3*5’

will be transformed into the text

-1+3*5

which will be assigned as a value to the variable eX. Then the program fragment
<(eX)> will be generated and the text -1+3*5 will be its value. Further this
text taking into account a sign - at its beginning will be inserted in resulting
expression <1 +...> instead of dots. It will lead to that the new fragment of the
program will be built which will be already finally executed.

The given example does not represent essentially anything new in comparison
with Refal, it is demonstrated with the purpose to make it easier to accept syntax
of the language Santra 3.

6 Functions-constructors in Patterns

It is interesting to use in patterns functions-constructors which arguments con-
tain variables. In this case the value of function-constructor, containing variables
of the pattern without change, will enter in the pattern. Therefore, the set of the
objects defined by the pattern as a whole will depend on the set of the objects
defined by the values of function-constructor also.

This function when used entirely as the pattern will define in this case not a
concrete matrix, but a set of matrixes of the given dimension if a number of ele-
ments of these matrixes is fixed, and if variables stand instead of other elements.
Let’s look at an example. Let function FORMMA be a function forming a matrix
of the given dimension. It is a function-constructor in relation to the arguments
that give matrix elements. Its arguments are the dimension of a matrix given by
the numbers of rows and columns, and the elements listed in rows. For example,
for forming of a matrix 2*2

1 2
3 4

it is necessary to write down
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<#FORMMA (<2>) (<2>)
(<1>) (<2>)
(<3>) (<4>)>

This function can be used also for giving the set of matrixes of the given dimen-
sion on which main diagonal arbitrary elements stand, as follows:

: <#FORMMA (<2>) (<2>)
(e11) (<2>)
(<3>) (e22)> =

Here instead of the elements standing on the main diagonal, variables e11 and
e22 are used. The sign = in the end of text is one of the separators of the
operators of language, it is similar to how it takes place in language Refal 6 [2].

If now these two examples will be concatenated as a program fragment, at
its execution, the concrete matrix will be compared with the pattern of a matrix
of the same dimension, so the value number 1 will be assigned to variable e11,
and the value number 4 will be assigned to variable e22. Furthermore, numbers
<2> and <3>, which stand not on the main diagonal of an initial matrix and
a matrix-pattern, should coincide, and that, naturally, takes place. Thus, the
values of a function to be inverted to function-constructor FORMMA in relation to
elements of the main diagonal of a matrix will be obtained.

7 Functions

Let’s give an example of the function calculating a factorial of the integer non-
negative number and described in the mathematics by a recurrent relations

FACT (1) = 1
FACT (N) = N * FACT (N-1)

In language Santra 3 this function is described by means of special function FDEF
as follows:

<#FDEF (‘FACT’) (‘
{
(<1>) = <1>;
(eN) = <(eN) * #FACT (<(eN)-1>)>;
}

’)> =

Here function FDEF is the system metafunction intended for defining of new
functions. Its call, as well as a call of any function, is pointed by prefix sign #, and
its arguments are the name of defining function FACT and the text of the program
corresponding to mathematical definition, given by the multitext. Without going
into other syntactic and semantic details, we would like to notice that giving this
program text as the multitext allows in the process of the execution of the initial
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program to prepare it for the execution and to delay the generated function till
the moment of its call. Thus one program is generating dynamically in the process
of execution of another program.

The moment of execution of the given program is defined by the call of the
function representing this program, by its name, for example:

<#FACT (<100>)>

The calculated value, naturally, should be a part of the expression in which it is
used, properly.

8 Abstract Data Types

Another function-constructor is the function of assigning type to the object.
It is named CLASS as the word “class” covers a wide sphere of subjects and
phenomena. Its first parameter is the classname, and the second is classified
(typified) expression. For example, for the classification of structure of the matrix
which is the value of a variable eM as an abstract type “matrix”, it is necessary to
write: <#CLASS (‘M’) (eM)> or <#CLASS (‘M’, eM)>, which is the same. Here
letter M is using as a class name.

Function CLASS is the function-constructor in relation to the second pa-
rameter. This function is used, for example, in the description of the function
FORMMU forming a matrix of an abstract type and having a format of the function
FORMMA, in the following way:

<#FDEF (‘FORMMU’)
(‘eA = <’#CLASS(‘M’)‘(<<(’#FORMMA‘eA)>>)>

’)>=

Here the function FORMMA — mentioned above function directly forming matrix
structure. By a call of the function FORMMU the function FORMMA is called first then
the type “matrix” is assigned to the generated by the function FORMMA structure
what is carried out by the function CLASS call. All parameters of the function
FORMMU are passed to the function FORMMA entirely by means of the only variable
eA. (By the way, in the example of finding the elements of a matrix given above
instead of the function FORMMA it would be possible to use the function FORMMU).
Syntax of a call of the function FORMMA has also some specifics that we will not
mention here.

Now for actions with typified matrixes it is necessary to describe operations
so that it would be possible to call corresponding functions for actions with
matrixes in its pure content, i.e. without attributes of typing. For example,
arithmetic operation + occurrence in arithmetic expression causes the function
ADDU, intended for addition of objects of various types of data, call accordingly.
This function should distinguish the types of data and call the corresponding
function which is carrying out the addition of objects in the pure content.
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The example of the description of the function ADDU in special case for recog-
nition only objects of matrix type and a call of corresponding function performing
addition of matrixes in its pure content is the following:

<#FDEF (‘ADDU’) (‘
{
(<’#CLASS(‘M’)‘(eM1)>, <’#CLASS(‘M’)‘(eM2)>) =
<’#CLASS(‘M’)‘(<’#ADDM‘(eM1, eM2)>)>;

}
’)>=

Let’s look at this in more details.
The definition of the function ADDU is given by the function FDEF, and the

function CLASS serves for giving the “matrix” data type. The sign , is used for the
separation of the two added parameters, and the sign = is used for the separation
of matrixes recognition and their assigning as values to variables eM1 and eM2
from the following action: actually addition of matrixes in its pure content by
the function ADDM and result classification as matrixes of abstract type by the
function CLASS. Here the delay of computations is actively used; it is possible to
illustrate it by displaying a delay of computations by a lower level on a vertical
instead of the use of inverted commas as follows:

<#FDEF( )( #CLASS( ) #CLASS( ) #CLASS( ) #ADDM )>
ADDU {(< M (eM1)>, < M (eM2)>)=< M (< (eM1, eM2)>)>;}

Here at the bottom level the elements which should be passed to the functions
FDEF without change are located, i.e. their computations concerning preparation
of parameters should be delayed, for what they have been presented by multi-
texts. Furthermore, type of matrix M is simply a letter which then is used by the
function CLASS as a classname. Similarly, the name of the defined function ADDU
is also a set of letters similar. These elements essentially are the literals given by
the means of a of pair inverted commas.

Elements, the computation of which should be delayed in essence, are also
entered by the means of multitexts. Two aspects of a delay of computations in
this case take place with the aim of providing of: 1) abstract data type recogni-
tion and extraction of matrixes structures in the pure content 2) actual addition
of matrixes and typing the result as a matrix. Abstract data types providing
consists of 1.1) pattern variables forming and 1.2) call of the function CLASS
with these variables as arguments. Each of these stages would be more logically
represented by the separate level of the multitext the depth of which would point
out the order of it fulfilling. Accordingly, the number of levels should be 3, in-
cluding the external level of the call of the function FDEF and the transformation
of the names of the functions CLASS and ADDM into references to functions. The
second aspect does not demand splitting on sublevels and can be left, as shown
above. Let’s list the contents of these levels integrally:

0. the function FDEF call, names of the functions FDEF, CLASS and ADDM which
must be transformed in references to the functions, plus corresponding paren-
thesis;
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1. the classname of matrixes, the variables which must be formed with corre-
sponding parenthesis, the syntactic signs of statements and functions, which
form result, calls with the corresponding parenthesis and the angle brackets;

2. the syntactic signs of the function CLASS call for the purpose of pattern
forming, including the necessary parenthesis, and just a call, indicated by
angle brackets.

It is possible to illustrate it as follows:

<#FDEF( )( #CLASS( ) #CLASS( ) #CLASS( ) #ADDM )>
ADDU { M (eM1) M (eM2) = < M (< (eM1, eM2)>)>;}

(< >, < >)

In essence, at the top zero level of the multitexts the names of the functions FDEF,
CLASS and ADDM are transformed into the references to functions and the call of
the function FDEF is being executed. Transition to the following levels is caused by
the necessity to pass the parameters of the function FDEF in its original invariable
kind already for the substantial transformation. Furthermore, actually just the
function FDEF forms the statement into which calls of the functions CLASS and
ADDM, brackets, a semicolon and variables must be entered properly. The sequence
of actions for the correct forming of a name of defined function and actually the
statement representing its body is set by corresponding levels of multitexts.
Furthermore, at second level there are only the angular brackets which provide
the function CLASS calls and parenthesis, containing them (the comma relates
to the parenthesis structure), for the purpose of data abstraction providing.
However, it turned out to be that the step of the data abstraction providing,
caused by the act of the function-constructor CLASS call, does not depend on
the step caused by the act of pattern variables forming. In this connection it
appeared possible to join together two bottom levels of providing of abstract
data types due to their independence which takes place in essence and to avoid
the occurrence of the second level by that as it was shown in the example given
in the beginning.

9 Pattern Matching and Data Abstraction

In this paper it is shown how it is possible to provide data abstraction by the
means of only one function intended for data types setting within the framework
of the system of symbolic manipulations based on the pattern matching. Such
opportunity follows from a special way of building of patterns which is so taken
that to provide a possibility to obtain values of the inversed functions. As a
result we get the opportunity of obtaining a value of function being inversed
to function which set the types of data. Obtaining of such value allows both to
distinguish data by their types, and to take this data itself for the performance
of operations above them, that is a necessary condition of supporting the data
abstraction. The necessary way of building the patterns is provided on the basis
of multilevel computations. The noted opportunity of data abstraction appears
entirely within the framework of the mechanism of symbolic manipulations based
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on the pattern matching principle at providing of multilevel computations in a
special manner.

The paper by Philip Wadler [28] also is devoted to a problem of interrelation
of pattern matching and abstract data types; Wadler offers a way of reconciling
pattern matching with data abstraction for the purpose of possibility of their
fitting together, while both the mechanism of pattern matching and the mech-
anism of data abstraction are self-defined and independent mechanisms. In his
paper possibility of valuable qualities of a combination of two these mechanisms
is shown.

Thus, the approach offered by us and Wadler’s approach seem to be abso-
lutely different. First, Wadler considers two mechanisms and, secondly, these
mechanisms are independent, while in our case only one mechanism of sym-
bolic manipulations on the basis of pattern matching takes place. Nevertheless,
the doubtless conceptual likeness of the two approaches takes place, despite the
essential distinction of objects considered. We will look at it in more details.

According to Wadler, the mechanism of reconciling pattern matching with
data abstraction offered by him could allow to use all possibilities of pattern
matching during the use of data abstraction. Initial Wadler’s position consists
in that the pattern matching is the convenient and effective mechanism of the
data transformation for such purposes as the proof of correctness of programs or
their transformation; however, the presence of abstract data brings these valu-
able qualities to nothing. The problem of reconciling pattern matching with data
abstraction is caused by especially various ways of data representation and their
processing: for the systems based on pattern matching the representation pro-
viding the convenient review of objects structure is used and for data abstraction
systems the representation is approached to machine one for the purpose of peak
efficiency reaching and compactness. As a result data of abstract types appear to
be hidden from direct visualization by means of pattern matching. For the pur-
pose of such visualization Wadler suggests to enter special functions, separately
for each concrete data type. Besides such functions entering it is necessary to
enter inversed functions so for transformation of the obtained results by pattern
matching means into abstract type. The term “visualization” is used just as a re-
flection of such qualities as clearness, obviousness, transparency and convenience
taking place in pattern matching systems.

Here two things are looking through at once: 1) at us all actions are carried
out exclusively within the framework of system of symbolic manipulations, and
Wadler connects absolutely various two mechanisms: the mechanism of symbolic
manipulations and the data abstraction mechanism and 2) at us it is entered the
only one function, at Wadler — two mutually inversed functions. It is interesting
that at visible distinction there is one similarity: Wadler in addition to the ab-
stract data visualization function suggests to enter inversed to it function while
at us unique function of data type setting is entered, and computation of value
of inversed to it function is carried out automatically on the basis of certain
manner of performance of symbolic manipulations. Thus, at us two functions,
direct and inversed take place also. However, inversed function is virtual, and
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it does not need to be defined unlike Wadler. Thus, despite formal distinction
of two approaches, they conceptually have much in common in view of a gener-
ality of properties both symbolic manipulations, and data abstraction without
dependence from their implementations.

It is necessary to notice also, that Wadler offers not a concrete implementa-
tion, but only the interesting idea which is subject to the further development.
We offer the concrete implementation, automatically giving the possibility to
use the data abstraction during the performance of symbolic manipulations, in
particular, for algebraic computations. Despite all that, undoubtedly, the ideas
of Wadler deserve attention.

10 Conclusion

In this paper a number of properties is shown which were received in the partic-
ular case of multilevel computations with the use of the symbolic manipulations
language on the basis of the pattern matching of Refal type during the inclusion
of a possibility to compute the patterns in the language. These properties are
the following:

– the possibility to find value of functions being inversed to the functions-
constructors at their use as a part of the patterns and

– on this basis — directly following possibility of data abstraction.

Let’s notice that the specified possibilities automatically become the possibilities
as well of the subsystems of algebraic computations in full at its implementa-
tion into the system of the symbolic manipulations constructed on the basis
of the provided ideas. Implementation itself conceptually does not concern the
mechanism of symbolic manipulations, and changes syntax of the constructed
language a bit. These changes consist, mainly, in the insignificant expansion of
the language of symbolic manipulations with new possibilities.

The expansion of Refal by possibility to compute patterns leads to interest-
ing and valuable qualities. It is necessary to note the naturalness of inclusion
in the language of this possibility which practically does not change the syntax
of the source language, but only expands it possibilities, due to new semantic
properties. Additional inclusion in the language of the means of algebraic com-
putations appeared to have little effect on the syntax of the language which
shows the expediency of expansion. The possibilities of algebraic computations
were automatically added with the means of data abstraction and, besides, were
essentially expanded by the full volume of symbolic manipulations in the widest
sense, including symbolical making of new program fragments and their execu-
tion that can appear important for algebraic computations in essence.
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