
Interpretive Overhead and Optimal
Specialisation. Or: Life without the Pending List

(Workshop Version)

Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

DIKU (Computer Science Dept., University of Copenhagen, Denmark)

Abstract. A self-interpreter and a program specialiser with the follow-
ing characteristics are developed for a simple imperative language:

1) The self-interpreter runs with program-independent interpretive over-
head; 2) the specialiser achieves optimal specialisation, that is, it elim-
inates all interpretation overhead; 3) the specialiser has been run on
a variety of small and large programs, including specialising the self-
interpreter to itself; 4) all specialiser parts except for loop unfolding
have been proven to terminate.
We achieve the above by using a structured language with separated con-
trol and data flow, containing loops but without while. The specialiser
uses two-level binding-time annotations in a new way: source annotations
are used to ensure correctness of specialised programs. A novelty: the spe-
cialiser has no need for a pending list, and does no call graph analysis
of the residual program. A source-to-source normalisation phase does
program transformations to avoid situations where the specialiser would
need to specialise code based on an unknown state. A pruning phase
efficiently achieves the effect of Romanenko’s arity raising.

Two interesting lines of work concern self-interpreters for programming lan-
guages. One line is to develop a self-interpreter with program-independent in-
terpretation overhead; this was the basis for the linear-time complexity hier-
archy of [27,25,14,16,24,4]. Another line is to develop a program specialiser1

and a self-interpreter that allow optimal program specialisation, a measure of
the strength/quality of a program specialiser, discussed in [18] Sections 6.4 and
8.5.1, and in [9,8,10,19,28]2.

The technical breakthrough for each line was to construct a self-interpreter
with a certain property. We know of no prior self interpreter sint that simulta-
neously possesses both properties:

– sint runs programs with program-independent overhead; and
– sint can be specialised optimally.

1 Also known as a partial evaluator.
2 As known from many fields, “optimality” is a very slippery concept. The formulation

for the strength/quality of a specialiser in [18] turned out to be practically useful,
and has since been dubbed Jones-optimality.

28 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

The above was our initial goal. Bottom line: the goal was achieved (see [11] for
details) and, along the way, new insights were gained into the control structure of
specialised programs; relations between binding-time annotations, conditionals
and loop unfolding rules; the use of program transformation to allow more liberal
unfolding; and how to specialise programs with tree-structured values.

1 Programming languages, interpretation overhead and
optimality

Basics. Program specialisation, or partial evaluation, is a well-established au-
tomatic program transformation [18,6]. Its purpose is to speed up programs by
exploiting partial, compile-time, knowledge of the subject program’s run-time in-
put. Standard jargon is to use the term static for that part of the program’s input
known at specialisation time, and dynamic for that part of the input only known
at run-time. We briefly recapitulate central notions concerning interpreters and
specialisers; for an in-depth coverage, the reader is referred to [18,16].

A programming language L consists of a set of programs Prog, a set of
data D, and a semantic function [[]] : Prog → (D ⇀ D) that assigns to each
p ∈ Prog a partial input-output function [[p]] : D ⇀ D. A timed programming
language has in addition a function timep(d) assigning a running time (a positive
integer) to each input, such that [[p]](d) is defined if and only if timep(d) is
defined.

We further assume that the data set is closed under pairing, meaning D×D ⊆
D; and that the language has concrete syntax, meaning Prog ⊆ D. Write d1

.= d2

to indicate partial equality: that both sides are undefined, or both sides are
defined and equal.

Interpretation and its overhead. A self-interpreter is a program sint that
satisfies

∀p∀d([[sint]](p, d) .= [[p]](d))

The interpretation overhead can be measured by the ratio

overheadsint(p, d) = timesint(p, d)/timep(d)

In general practice, a self-interpreter will satisfy

∀p∃c∀d(overheadsint(p, d) ≤ c)

that is, interpreting a program incurs (at most) a slowdown of a factor of c
in relation to running the program natively. Factor c can depend on p, so the
overhead is program-dependent in general. Typical causes of program-dependent
overhead can be the need for the interpreter to look up variables in a run-time
store, or to find the target of a function call or a goto command.

Interpretive Overhead and Optimal Specialisation 29

We say that the self-interpreter has program-independent interpretation
overhead if the overhead does not depend on the program p, that is, the following
holds (note the changed order of the quantifiers):

∃c∀p∀d(overheadsint(p, d) ≤ c)

Such an interpreter is called “efficient” (see e.g. [16, Def. 19.1.1]). There exist ef-
ficient self-interpreters, e.g., for structured programs with only one variable. This
has been proven in [14,16,2,24] where it is shown to lead to a complexity-theoretic
linear hierarchy theorem: that even within linear time, for such a language, in-
creasing an allowed running time bound properly increases the class of decision
problems that can be solved within the given bound.

Specialisation and optimality. A program specialiser is a program spec that
satisfies

∀p∀s∀d([[[[spec]](p, s)]](d) .= [[p]](s, d))

We call [[spec]](p, s) the specialised program, and denote it for short by ps. In
general practice, the result of program specialisation will satisfy :

∀p∃c′∀s∀d(speedupp(s, d) ≥ c′) where speedupp(s, d) =
timep(s, d)
timeps(d)

The point of specialisation is speedup: ps may be substantially faster than p.
The optimality criterion arose as a precise criterion for being able to state

that a partial evaluator is “good enough”, that is, able to remove as much static
overhead as can reasonably be expected. This criterion is rather vague, but
as specialisers have been much applied to program interpreters as well-known
examples of programs with significantly large static overheads, the following
more precise—and ambitious—criterion can be stated: Given a self-interpreter
sint, the specialiser should ideally be able to remove all interpretation overhead.

Technically, this can be formulated as follows: given a program p, construct
program p′ = [[spec]](sint, p) by specialisation. It is straightforward to see that
this transformed program is semantically equivalent to p, i.e., that [[p′]] = [[p]].
The specialiser is called optimal (Definition 6.4 of [18]) if p′ is always at least as
fast as p, that is, for all input data d we have

timep(d) ≥ timep′(d)

Another way to say this is:

speedupsint(p, d) ≥ overheadsint(p, d)

In words: p′ suffers from none of the overhead that was introduced by use of the
interpreter sint.

This goal, while often stated, is not often achieved. Remark: optimality is
more a property of the strength of the specialiser than of the self-interpreter.

30 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

2 Designing LOOP

Our two goals: program-independent interpretation overhead and optimal spe-
cialisation. The program-independent requirement on interpretation overhead
is quite stringent: It rules out the use of an unbounded number of program
variables as it would take program-dependent time to search the store or value
environment; and it also rules out the use of unstructured control such as goto or
calls to named functions, as these would also need program-dependent searches
in the program symbol table. One step to circumventing these difficulties is to
use an imperative language with structured control. Another step is to follow
the LISP/Scheme/ML tradition of tree-structured data, and to limit programs
to have at most a single variable with only one leaf value N (nil). Perhaps sur-
prisingly this does not cause any loss of expressiveness in the sense that all
Turing-computable function may still be computed; in addition, the restriction
to one variable does not have violent effects on asymptotic program running
times [14,2,24]. We follow this principle in our design of our language LOOP ,
admitting at most a single variable, X, to be accessed by any program.

Specialisation and loop unfolding Specialisation has two dimensions: data and
control. The data aspect is classically handled using a division: a classification
of the store (the program’s run-time data) into static parts and dynamic parts.
In the present context where the store contains only one variable, the division
identifies each data operation on a part of the current value of X as either static:
to be computed at specialisation time; or dynamic: to be used to generate residual
code. The main specialisation technique for data amounts to large-scale constant
propagation. We use an analogous technique, adapted to tree-structured data.

The control aspect is more tricky. In most of the specialisers in [18] (the
exception being lambda-mix) a program point in the residual program is a pair
(pp, vs) where pp is a program point in the subject program, and vs is a tuple of
static data values. Any control transfer from a program point pp is specialised
into residual form: goto (pp, vs), i.e., an unstructured goto statement.3

Alas, such a solution is incompatible with our goal of efficient interpreta-
tion, as it requires considerable program-dependent overhead to interpret a goto
statement. Hence we restrict the LOOP language to structured loops.

A tricky point about specialisation: write subject,...⇒ residual to mean
that a subject command, in the presence of specialisation-time information ...
about static values, is transformed into a residual command. Then the following
is a plausible but incorrect transformation rule:

E, ... ⇒ E′ C, ... ⇒ C′

while E do C, ... ⇒ while E′ do C′

Interestingly, this familiar-looking context rule is incorrect for specialisation.
When execution reaches the end of the loop body C, static data may not have
3 The specialised program points (pp, vs) are kept track of during specialisation time

by means of the “pending list”, implementing the set poly ([18], e.g., Section 4.5).

Interpretive Overhead and Optimal Specialisation 31

the same values as they had at the entry to the loop. Thus in the residual
(specialised) program the loop does not return to the same point as in the
subject program (!)

To see the need for care, consider a simple imperative language with a while-
loop and the following example where variable s is static and d is dynamic.

s := 1;

while(d <> 0) do

{ if(s = 1)

then C1; s := 2

else if(s = 2)

then C2; s = 0

else C3

}

Since s is statically determined all the ifs can be handled at specialisation time.
Following the inference rule above the code would be specialised to

while(d <> 0) do C1

This is clearly wrong as no account is taken of the changing value of s.
A solution: apply the context rule yielding while E′ do C′ only if we are

certain that static values are the same at entry to and exit from C′. Technically
this may be done by annotating each “repeat point” (a program point in the
loop where control is returned to the beginning of the loop) as residual (not to
be unfolded) only when this property holds.

An added benefit of an explicit representation (and annotation) of repeat
points is that we may allow unfolding of loops for which static data get smaller
(see also [26]), and[18] Section 5.5.1) and that we may avoid both general gotos
and the “pending list” as a specialiser can be guided by the now-explicit control
flow.

The imperative language LOOP and its self-interpreter. Guided by the remarks
above, our subject programming language has programs with a single variable
X; separated control and data flow; and explicit loop returns. The result is
computationally and efficiency-wise equivalent (up to small constant factors) to
the usual WHILE language of [16], but easier to manage and analyse.

LOOP syntax is as follows (C = command, E = expression, V = value).
Values are binary trees with only a single atom N (pronounced “nil”), for exam-
ple, v = (N,(N,N)). Operators: cons builds a tree, hd and tl deconstruct, =?
tests for equality, and value N is read as falsity in if and (the result of) =?. The
single program variable is called X.

C ::= X := E | C1 ; C2 | loop{C} | if(E) then{C1} else{C2} | repeat
E ::= X | V | hd E | tl E | cons E1 E2 | =? E1 E2

V ::= N | (V1, V2)

Semantics: command repeat transfers control to the nearest enclosing loop; all
else is as expected.

32 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

The familiar while construction can be paraphrased by:

while E do C ≡ loop{if(E)then{C; repeat}else{X:=X}}

Self-interpretation of LOOP . Self-interpretation is straightforward and details
are thus omitted from this short abstract. Constant-overhead interpretation of
the loop{C} construction is done by pushing C on a separate “loop stack”, us-
ing the stack top when interpreting repeat, and popping the stack if control
reaches the end of C without a repeat command. Experiments using an imple-
mentation in ML showed that an interpreted program runs around 200 times
slower than direct execution when compared using unit cost timing. Symboli-
cally, timesint(p, d) ≥ 200 · timep(d).

But the specialiser will be seen to be optimal, so timep(d) ≥ timesintp(d),
i.e., all interpretation overhead is removed by specialisation. This implies that
specialisation gives very high speedup. Indeed, by the definition of Section 1:

speedupp(d) =
timesint(p, d)
timesintp(d)

≥ 200

3 Specialisation of LOOP

An important insight: since the language uses only one variable, the entire store
can be represented by a single expression. We can then at specialisation time
maintain all static store changes occurring between dynamic store updates effi-
ciently in an “accumulator” expression.

As seen earlier, specialisation of loops is tricky and engenders a need for
explicit annotation of “repeat” statements. To cope with this we add to the
source program annotations that carry information to direct the specialisation.

Two-level annotated LOOP programs We give a very brief account of the 2-level
annotation [18, Section 5.3] used, details can be found in [11]. The annotations
add a static (s) or dynamic (d) tag to each assignment (:=) and conditional
(if). Tagging a command as dynamic will make the command appear in the
residual code. An assignment := is marked static if the the right-hand side of the
assignment only involves lookups in parts of X known to be static. The dynamic,
hence unknown, parts of X may be freely copied by giving a reference to their top
node in the tree. For example, if the left subtree is dynamic we may statically
compute hd(X) but not hd(hd(X)). Conditional commands if (E) then
{C1} else {C2} are marked as static if E can be computed at specialisation
time.

Expressions may be extended with tag lift or static. The tag lift marks
an expression part whose value is static, and will be transferred into the residual
program. Tag static marks an expression part that does not depend on the

Interpretive Overhead and Optimal Specialisation 33

dynamic input.

C ::= C1;C2 | loop{C} | X :=s E | X :=d E| ifs(E)then{C1}else{C2}
| ifd(E)then{C1}else{C2} | repeat | unfold | duplicate

E ::= X | V | cons E1 E2 | =? E1 E2 | hd E | tl E | static E | lift E

V ::= N | (V1,V2)

The crux of specialisation of LOOP is the repeat command; this command
may be annotated in one of three ways:

1. Dynamic: generate a residual repeat. Annotated form: repeat. (As re-
marked above, this is only semantics preserving if static data are unchanged
in the loop; otherwise, incorrect residual code will be produced.)

2. Static duplicate: generate a copy of the entire enclosing loop (not just its
body). Annotated form: duplicate. This is necessary to handle the interpre-
tation of a loop command, which should result in a residual loop. In general
this is required when the size of the static data increases.

3. Static unfold: replace repeat by the body of the loop. Annotated form:
unfold. (This is generally semantics-preserving, and terminates if static data
has properly decreased in size since the beginning of the loop.)

To enable aggressive specialisation, we perform a number of program trans-
formations to turn the source program into a semantically equivalent program
better suited for specialization. Consider the following case and two transforma-
tions:

Loop with successor Transformation I Transformation II
;

loop

...

repeat

C1 C2 ...

repeat

C

;

if

E C1 C2

C3

⇒ if

E ;

C1 C3

;

C2 C3

;

loop

C1

C2

⇒ loop

;

C1 C2

The tricky point is how to specialise the code marked C after specialisation of
the loop. A simple program transformation can be performed to turn the source
program into an equivalent program where the loop does not have a successor.
Concretely, we use a suite of various transformations to alleviate this problem,
essentially by moving the code following certain commands like loop or if inside
the loop or if command.

Note that while Transformation I is always applicable, Transformation II
may not be performed when execution of C2 could end in a repeat: moving a
repeat inside a loop may clearly change the semantics of the program, hence
should be disallowed.

34 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

We denote the process of applying the transformations outlined above (plus
numerous terminating small optimisations such as hd(cons E E′) = E, etc.) by
normalisation. The normalisation process has been formally proven to terminate;
we refer the reader to [11] for details.

The various phases of the specialisation of program p to static data s are:

s
annotate normalize specialize

normalize prune

p

After the specialiser generates code by a second application of normalisa-
tion, further improvements are done. The final phase is pruning. Its purpose:
straightforward specialisation may generate “dead” parts of the store that are
never referenced by the residual program. Worse, as the store consists of a single
variable, these dead parts may cause a slowdown in the residual program, since
unnecessary store operations may be needed to get to the live parts. To keep
the specialisation conceptually simple, we have chosen to perform the removal of
dead parts in a separate phase called pruning ; we again refer the reader to [11]
for details. The pruning serves a purpose similar to Romanenko’s arity raising
[23,22].

Our specialiser performs two tasks while scanning its subject program:

– Generate residual code for dynamic parts of the subject program
– Between points where code is generated, maintain an accumulator expression

that sums up the effect of the static program computations since the last
point where residual code was generated.

Example To illustrate how the accumulator expression is used to keep track of
the static changes to the program, the simple example in the left column of the
table below is used. The left branch of X is assumed to be static and the right
branch is dynamic. The example uses integers, +, and - as shorthand for easily
defined encodings of integers and the successor and predecessor functions.

Annotated subject code accumulator Residual code

X
X:=s cons(3,X); cons(3,X)
X:=s cons(hd(X)+2,tl(X)); cons(5,tl(X))
X:=d cons(hd(X),tl(X)-1); X X:=cons(5,tl(X)-1)
X:=s cons(hd(X)-1,tl(X)) cons(4,tl(X))
X:=d cons(hd(X),tl(X)-2) X X:=cons(4,tl(X)-2)

Interpretive Overhead and Optimal Specialisation 35

4 Experimental results

Experiments were performed, divided into a number of runs, each representing
different configurations of specialisation, with or without involvement of the self-
interpreter:

Computer runs I, II, III, IV, V, VI
I: out := [[p]](s,d)
II: out := [[sint]](p,(s,d))
III: out := [[sint]]((sint,p),(s,d))
IV: out := [[[[spec]](p,s)]](d)
V: out := [[[[spec]](sint,p)]](s,d)
VI: out := [[[[spec]](sint,sint)]](p,(s,d))

For each run, a suite of different input programs p were considered, in partic-
ular, two versions of the append function, a program for lexicographic ordering,
and four instances of the string matching problem using a naive string matcher.4

The timing results for all experiments are given below. Timing figures count
1 for each primitive operation. Times for runs IV, V, VI are for the outermost
[[]], i.e., they do not include the time to do specialisation.

Run→ I II III IV V VI Ohead Ohead Speedup Optim
Program↓ II

I
III
II

I
IV

I
V

append 103 19526 4182587 6 103 19526 190 214.2 17.17 1.0
append2 107 20385 4366607 105 107 20385 191 214.2 1.02 1.0
lex 131 24723 5301189 33 131 24723 189 214.4 3.97 1.0
string 1 637 131922 28287715 291 637 131922 207 214.4 2.19 1.0
string 2 21 4121 882810 2 21 4121 196 214.2 10.5 1.0
string 3 115 23682 5077711 55 115 23682 206 214.4 2.09 1.0
string 4 478 98310 21078960 189 478 98310 206 214.4 2.53 1.0

The experimental runs back our claim of optimal specialisation on substan-
tial programs. Specialising programs to static data yields speedups as seen in
the Speedup column showing the ratio of the execution times of columns I and
IV. The column Optim shows the relation between the time for direct program
execution (I) and the speed of the result of specialising the self-interpreter (V).
For the final run (VI) we expect the specialisation of the interpreter with itself
to yield an interpreter. Again for optimality this interpreter must run as fast as
the original interpreter. The unshown comparison of VI/II shows this to be true.

If the specialiser is optimal the execution time of the specialised interpreter
should be at least as fast as direct execution. This is the case for our specialiser.
Even though the the specialised interpreter’s execution time turned out to be

4 Ideally the specialisation of the string matcher should produce code equivalent to
the Knuth-Morris-Pratt algorithm for string matching. This is not the case here, but
the specialisation still provides a substantial speedup.

36 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

the same as the time for direct execution, examination of the code produced by
the specialiser reveals a program that is not identical to the one the interpreter
is specialised to.

Further evidence that we succeeded in our overhead goal is that the inter-
pretive overhead (ratios of columns II/I and III/II) are nearly constant over a
wide range of program sizes, even over double self-interpretation (run III).

5 Future work

The semantic basis for specialisation needs to be better formulated, and its cor-
rectness proven. Ideally, optimality could be proven (beyond the fairly extensive
pragmatic results of the previous section). Further, it would be good to re-express
the ideas using a more general store; the constructions we used don’t seem to
have a fundamental connection with the restriction to one-variable programs.

Another issue concerns program annotation: a binding-time analysis has yet
to be devised and implemented. The current status is that all test programs were
hand annotated (including the self-interpreter, a tricky job). This establishes
that the two-level language is expressive enough for nontrivial specialisation.
However, a better formal understanding of annotated programs is needed before
the process of annotating a program can be completely automated. We aim to
do so, once the two-level semantic issues are better understood.

References

1. M. S. Ager, O. Danvy, and H. K. Rohde. Fast partial evaluation of pattern matching
in strings. In Proceedings of the 2003 ACM SIGPLAN workshop on Partial evalu-
ation and semantics-based program manipulation, pages 3–9. ACM Press, 2003.

2. A. Ben-Amram and N. Jones. Computational complexity via programming lan-
guages: Constant factors do matter. Acta Informatica, 37:83–120, 2000.

3. D. Bjørner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mixed
Computation, North-Holland, 1988. Elsevier Science Publishers B.V.

4. A. Blass and Y. Gurevich. The linear time hierarchy theorems for abstract state
machines and rams. Journal of Universal Computer Science, 3(4):247–278, apr
1997.

5. C. Consel and O. Danvy. Partial evaluation of pattern matching in strings. Infor-
mation Processing Letters, 30(2):79–86, 1989.

6. C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 493–501. ACM Press, 1993.

7. O. Danvy, R. Glück, and P. Thiemann. Partial Evaluation. Dagstuhl castle, Ger-
many, volume 1110 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

8. B. Feigin and A. Mycroft. Jones optimality and hardware virtualization: a report
on work in progress. In Hatcliff et al. [12], pages 169–175.

9. J. Gade and R. Glück. On Jones-optimal specializers: A case study using Unmix. In
N. Kobayashi, editor, Programming Languages and Systems. Proceedings, volume
4279 of Lecture Notes in Computer Science, pages 406–422. Springer-Verlag, 2006.

Interpretive Overhead and Optimal Specialisation 37

10. R. Glück. Jones optimality, binding-time improvements, and the strength of pro-
gram specializers. In Proceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 9–19. ACM Press, 2002.

11. L. Hartmann. LOOP, a language with Jones optimal interpretation and pro-
gram independent interpretation overhead. Technical report, DIKU, University
of Copenhagen, URL=ftp://ftp.diku.dk/diku/semantics/papers/D-589.pdf,
2008.

12. J. Hatcliff, R. Glück, and O. de Moor, editors. Proceedings of the 2008 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program Manipu-
lation, PEPM 2008, San Francisco, California, USA, January 7-8, 2008. ACM,
2008.

13. J. Hatcliff, T. Mogensen, and P. Thiemann. Partial Evaluation - Practice and
Theory, DIKU 1998 International Summer School, volume 1706 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

14. N. D. Jones. Constant time factors do matter. In S. Homer, editor, STOC ’93.
Symposium on Theory of Computing, pages 602–611. ACM Press, 1993.

15. N. D. Jones. The essence of program transformation by partial evaluation and
driving. In M. S. Neil D. Jones, Masami Hagiya, editor, Logic, Language and
Computation, a Festschrift in honor of Satoru Takasu, pages 206–224. Springer-
Verlag, Apr. 1994.

16. N. D. Jones. Computability and Complexity from a Programming Perspective.
Foundations of Computing. MIT Press, Boston, London, 1 edition, 1997.

17. N. D. Jones. Transformation by interpreter specialisation. Sci. Comput. Program.,
52(1-3):307–339, 2004.

18. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and automatic
program generation. Prentice-Hall, Inc., 1993.

19. H. Makholm. On Jones-optimal specialization for strongly typed languages. In
W. Taha, editor, Semantics, Applications and Implementation of Program Genera-
tion, volume 1924 of Lecture Notes In Computer Science, pages 129–148, Montreal,
Canada, 20 Sept. 2000. Springer-Verlag.

20. T. Mogensen. Inherited limits. In J. Hatcliff, T. Mogensen, and P. Thiemann,
editors, Partial Evaluation: Practice and Theory. Proceedings of the 1998 DIKU
International Summerschool, volume 1706 of Lecture Notes in Computer Science,
pages 189–202. Springer-Verlag, 1999.

21. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

22. S. A. Romanenko. Arity raiser and its use in program specialization. In ESOP
1990, pages 341–360, 1990.

23. S. A. Romanenko. The specializer UNMIX (for scm scheme). Technical report,
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1993.

24. E. Rose. Linear time hierachies for a functional language machine model. In
H. R. Nielson, editor, Programming Languages and Systems – ESOP‘96, volume
1058 of LNCS, pages 311–325, Linköping, Sweden, Apr 1996. Linköping University,
Springer-Verlag.

25. A. Schönhage. Storage modification machines. SIAM Journal of Computing, 9:490–
508, 1980.

26. P. Sestoft. Automatic call unfolding in a partial evaluator. In D. Bjørner, A. Er-
shov, and N. Jones, editors, Partial Evaluation and Mixed Computation, pages
485–506. North-Holland, 1988.

27. I. H. Sudborough and A. Zalcberg. On families of languages defined by time-
bounded random access machines. SIAM J. Comput., 5(2):217–230, 1976.

38 Lars Hartmann, Neil D. Jones, Jakob Grue Simonsen

28. W. Taha, H. Makholm, and J. Hughes. Tag elimination and Jones-optimality.
In O. Danvy and A. Filinski, editors, Programs as Data Objects, volume 2053 of
LNCS, pages 257–275, Heidelberg, Germany, 21–23 May 2001. Springer-Verlag.

29. P. Thiemann. Aspects of the PGG system: Specialization for standard scheme.
In Partial Evaluation - Practice and Theory, DIKU 1998 International Summer
School, pages 412–432. Springer-Verlag, 1999.

30. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

	Programming languages, interpretation overhead and optimality
	Basics.
	Interpretation and its overhead.

	Designing LOOP
	Specialisation and loop unfolding
	The imperative language LOOP and its self-interpreter.
	Self-interpretation of LOOP.

	Specialisation of LOOP
	Two-level annotated LOOP programs
	Example

	Experimental results
	Future work

